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Foreword

Following the previous s
hools, whi
h have taken pla
e in Kazimierz every two

years sin
e 2005, the Institute of Theoreti
al Physi
s of the University of Warsaw

organized the 5th Warsaw S
hool of Statisti
al Physi
s (June 22th to 29th, 2013).

The program of the s
hool was essentially 
omposed of six 
ourses 
orresponding

to various areas of resear
h in the �eld of statisti
al physi
s. Six distinguished

s
ientists presented pedagogi
al series of le
tures bringing a 
lear explanation of

basi
 theoreti
al ideas, and en
ouraging further resear
h. The le
tures were at-

tended by PhD students, postgraduate resear
hers, and also by more experien
ed

s
ientists interested in getting a
quainted with a new �eld.

The present volume 
ontains the texts of the 
ourses. We are grateful to the

invited speakers for their willingness to make their le
ture notes ready for pu-

bli
ation. We do hope the volume will be useful not only to the parti
ipants of

the s
hool but also to all those interested in the 
urrent development of ideas in

statisti
al physi
s.

It is also a pleasure to a
knowledge all those individuals and organizations

(listed overleaf) who 
ontributed to the su

ess of the s
hool.

S
ienti�
 Organizing Committee:

Bogdan Ci
ho
ki

Marek Napiórkowski

Jarosªaw Piase
ki

For further information about the S
hools see:

http://www.fuw.edu.pl/∼wssph/
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Sponsors

Fa
ulty of Physi
s, University of Warsaw

Ministry of S
ien
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ation

Lo
al Organizing Committee

Bogdan Ci
ho
ki - Chair

Paweª Jakub
zyk - Se
retary

Piotr Szym
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Karol W�doªowski
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1

Non-equilibrium Statisti
al Me
hani
s of

the Sto
hasti
 Navier�Stokes Equations

and Geostrophi
 Turbulen
e

Freddy Bou
het, Cesare Nardini, and Tomás Tangarife

Abstra
t Two-dimensional and geophysi
al turbulent �ows have the property to

self organize and 
reate large s
ale 
oherent jets and vorti
es. This is for instan
e

one of the major pro
esses for the dynami
s of Earth's atmosphere. Following On-

sager initial insight, based on 
onjugated works by mathemati
ians and physi
ists,

this fundamental physi
al pro
ess has found some explanations in the framework

of statisti
al me
hani
s. An important step, initiated twenty years ago, has been

the study of the equilibrium statisti
al me
hani
s for the 2D Euler and the related

quasi-geostrophi
 models (the Miller-Robert-Sommeria theory).

Real geophysi
al and experimental �ows are however dissipative and maintained

by external for
es. These le
tures fo
us on re
ent theoreti
al development of the

statisti
al me
hani
s of those non-equilibrium situations. Those progresses have

been a
hieved using tools from �eld theory (path integrals and instantons), non-

equilibrium statisti
al me
hani
s (large deviations, sto
hasti
 averaging). The aim

of these le
tures is to brie�y introdu
e the theoreti
al aspe
ts of this program in

the simplest 
ontext: the 2D sto
hasti
 Euler or Navier-Stokes equations and the

quasi-geostrophi
 equations.

We review path integral representations of sto
hasti
 pro
esses, large deviations

for transition probabilities, a
tion minimization, instanton theory, for general me-


hani
al systems for
ed by random for
es. We will apply this framework in order

to predi
t equilibrium and non-equilibrium phase transitions for the 2D Euler,

Navier-Stokes, and quasi-geostrophi
 dynami
s, and to predi
t the rates of rare

transitions between two attra
tors in situations of �rst order phase transitions.

Kineti
 theory of systems with long range intera
tions, both with and without

sto
hasti
 external for
es, are explained. Based on this kineti
 theory, we predi
t

non-equilibrium phase transitions, and dis
uss their re
ent experimental observa-

tions and numeri
al simulations.

Even if the model we have 
onsidered so far are too simple a
ademi
 models, the

Freddy Bou
het

Laboratoire de physique, É
ole Normale Sup¯ieure de Lyon et CNRS, 46 allée d'Italie, 69007

Lyon, Fran
e

email: Freddy.Bou
het�ens-lyon.fr
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4 Freddy Bou
het, Cesare Nardini, and Tomás Tangarife

expe
ted relevan
e of those approa
hes in the future for Earth atmosphere and


limate dynami
s is brie�y dis
ussed.

1 Introdu
tion

1.1 Self-organization of two-dimensional and geophysi
al

�ows

Atmospheri
 and o
eani
 �ows are three-dimensional (3D), but are strongly dom-

inated by the Coriolis for
e mainly balan
ed by pressure gradients (geostrophi


balan
e). The turbulen
e that develops in su
h �ows is 
alled geostrophi
 turbu-

len
e. Models des
ribing geostrophi
 turbulen
e have the same type of additional

invariants as those of the two-dimensional (2D) Euler equations. As a 
onsequen
e,

energy �ows ba
kward and the main phenomenon is the formation of large s
ale


oherent stru
tures (jets, 
y
lones and anti
y
lones). One su
h example is the

formation of Jupiter's Great Red Spot, Fig. 1.

Fig. 1: Pi
ture of Jupiter's Great

Red Spot - a large s
ale vortex

situated between bands of atmo-

spheri
 jets. Photo 
ourtesy of NASA:

http://photojournal.jpl.nasa.gov/
atalog

/PIA00014.

Fig. 2: Zonally averaged velo
ity pro�le in the

upper troposphere of Jupiter. The �ow is organ-

ised into alternating strong jets.

The analogy between 2D turbulen
e and geophysi
al turbulen
e is further em-

phasized by the theoreti
al similarity between the 2D Euler equations, des
ribing

2D �ows, and the layered quasi-geostrophi
 or shallow water models, des
ribing

the largest s
ales of geostrophi
 turbulen
e: both are transport equations for a

s
alar quantity by a non-divergent �ow, 
onserving an in�nite number of invari-

ants.
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The formation of large s
ale 
oherent stru
tures is a fas
inating problem and

an essential part of the dynami
s of Earth's atmosphere and o
eans. This is the

main motivation for setting up a theory for the self-organization of 2D turbulen
e.

1.2 Statisti
al me
hani
s of the self-organization of

two-dimensional and geophysi
al �ows: Onsager's

equilibrium route

Any turbulen
e problem involves a huge number of degrees of freedom 
oupled

via 
omplex nonlinear intera
tions. The aim of any theory of turbulen
e is to

understand the statisti
al properties of the velo
ity �eld. It is thus extremely

tempting to atta
k these problems from a statisti
al me
hani
s point of view.

Statisti
al me
hani
s is indeed a very powerful set of theoreti
al tools that

allows us to redu
e the 
omplexity of a system down to a few thermodynami


parameters. As an example, the 
on
ept of phase transition allows us to des
ribe

drasti
 
hanges of the whole system when a few external parameters are 
hanged.

Statisti
al me
hani
s is the main theoreti
al approa
h we develop in these le
tures.

It su

eeds in explaining many of the phenomena asso
iated with two-dimensional

turbulen
e [13℄.

This may seem surprising at �rst, as it is a 
ommon belief that statisti
al me-


hani
s is not su

essful in handling turbulen
e problems. The reason for this

belief is that most turbulen
e problems are intrinsi
ally far from equilibrium. For

instan
e, the forward energy 
as
ade in three-dimensional turbulen
e involves a

�nite energy dissipation, no matter how small the vis
osity (anomalous dissipa-

tion) (see for instan
e Onsager's insightful 
onsideration of the non-
onservation

of energy by the three dimensional Euler equations [28℄). As a result of this �nite

energy �ux, three dimensional turbulent �ows 
annot be 
onsidered 
lose to some

equilibrium distribution.

By 
ontrast, two-dimensional turbulen
e does not su�er from the anomalous

dissipation of the energy, so equilibrium statisti
al me
hani
s, or 
lose to equi-

librium statisti
al me
hani
s makes sense when small �uxes are present. The

�rst attempt to use equilibrium statisti
al me
hani
s ideas to explain the self-

organization of two-dimensional turbulen
e dates from Onsager work in 1949 [51℄

(see [28℄ for a review of Onsager's 
ontributions to turbulen
e theory). Onsager

worked with the point-vortex model, a model that des
ribes the dynami
s of sin-

gular point vorti
es, �rst used by Lord Kelvin and whi
h 
orresponds to a spe
ial


lass of solutions of the 2D Euler equations. The equilibrium statisti
al me
hani
s

of the point-vortex model has a long and very interesting history, with wonderful

pie
es of mathemati
al a
hievements [1; 18; 21; 26; 27; 37; 39; 51℄.

The generalization of Onsager's ideas to the 2D Euler equations with a 
ontin-

uous vorti
ity �eld, taking into a

ount all invariants, has been proposed in the

beginning of the 1990s [45; 57; 58; 60℄, leading to the Miller�Robert�Sommeria

theory (MRS theory). The MRS theory in
ludes the previous Onsager theory

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



6 Freddy Bou
het, Cesare Nardini, and Tomás Tangarife

and determines within whi
h limits the theory will give relevant predi
tions and

results.

The MRS theory deals with the mi
ro
anoni
al invariant measure. It predi
ts

that most mi
ros
opi
 states (vorti
ity �eld) 
on
entrate into a single ma
rostate

(most vorti
ity �elds basi
ally have the same large s
ale velo
ity �eld). This

explains why one should expe
t the �ow to self-organize into this equilibrium

ma
rostate. This equilibrium ma
rostate is 
hara
terized by the maximization of

an entropy with some 
onstraints related to dynami
s invariants. The aim of se
-

tion 3 is to sket
h the derivation of this variational problem, whi
h is the basis

of the theory. Then appli
ation to the Great Red Spot of Jupiter will be brie�y

summarized.

These two points 
onstitute a very brief overview of equilibrium statisti
al me-


hani
s. Over the last �fteen years, the RSM equilibrium theory has been applied

su

essfully to a large 
lass of problems, for both the two-dimensional Euler and

quasi-geostrophi
 equations. This in
ludes many interesting appli
ations, su
h as

the predi
tions of phase transitions in di�erent 
ontexts, a model for the Great

Red Spot and other Jovian vorti
es, and models of o
ean vorti
es and jets. A

detailed des
ription of the statisti
al me
hani
s of 2D and geophysi
al �ows (the-

ory) and of these geophysi
al appli
ations is presented in the review [13℄. Older

reviews or books [40; 42; 64℄, give a very interesting 
omplementary viewpoint,

stressing mainly the theory and laboratory experiments. The note by Y. Pomeau

[54℄ gives also a very interesting 
omment on the reason why the two-dimensional

Euler equations, by 
ontrast with most other equilibrium approa
h for 
lassi
al

�eld theory, does not su�er from the Rayleigh-Jeans paradox (basi
ally the fa
t

that a 
lassi
al �eld has an in�nite heat 
apa
ity). This point is further dis
ussed

in [13℄. Finally we stress that equilibrium statisti
al me
hani
s for two dimen-

sional and geophysi
al �ows is still a very a
tive subje
t, with many 
ontribution

during the last few years [8; 24; 33�35; 48; 49; 55; 66; 70; 71; 73℄, many of them

by bright young s
ientists.

As far as equilibrium statisti
al me
hani
s is 
on
erned, the aim of these le
ture

is just to explain the basis of Miller�Robert�Sommeria theory, explain how to


ompute the entropy of ma
rostate and thus their probability through the use of

large deviation theory. We dis
uss these points in se
tion 3 at a level whi
h is as

elementary as possible.

1.3 Non-equilibrium statisti
al me
hani
s of the

self-organization of two-dimensional and geophysi
al

�ows: statisti
al me
hani
s and dynami
s

Most of natural turbulent �ows are not freely evolving, they are rather 
on-

stantly for
ed and dissipated. Then, in statisti
ally stationary regimes, power

input through external for
es balan
e energy dissipation on average. In the limit

of very small for
es and dissipation, 
ompared to 
onservative terms of the dy-

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==
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nami
s, it is expe
ted to �nd a strong relation between these non-equilibrium

�ows and some of the states predi
ted by equilibrium statisti
al me
hani
s. In

order to give a pre
ise meaning to this general idea, and to deal with far from

equilibrium situations, it is essential to develop also the non-equilibrium statisti-


al me
hani
s of the 2D Euler, 2D Navier-Stokes and barotropi
 quasi-geostrophi


equations. As we dis
uss below, this has been the subje
t of re
ent key advan
es

in the appli
ations of statisti
al me
hani
s to turbulent �ows. This is a
tually the

main subje
t of these le
tures.

We present two non-equilibrium statisti
al me
hani
s approa
hes: the �rst deals

with non-equilibrium �rst order phase transitions and the 
omputation of transi-

tion rates using large deviations, and the se
ond is a kineti
 theory approa
h to

the predi
tion of the large s
ale �ows.

1.3.1 Statisti
al me
hani
s of paths in phase spa
e and

non-equilibrium bistable turbulent �ows

Many turbulent �ows 
an evolve and self-organize towards two or more very di�er-

ent states. In some of these systems, the transitions between two of su
h states are

rare and o

ur relatively rapidly. Examples in
lude the Earth magneti
 �eld rever-

sals (over geologi
al times
ales) or in magneti
 �eld reversal in MHD experiments

(e.g. the Von Kármán Sodium (VKS) turbulent dynamo in Fig. 3) [3℄, Rayleigh-

Bénard 
onve
tion 
ells [17; 20; 50; 65℄, 2D turbulen
e [10; 41; 63℄ (see Fig. 4),

3D �ows [56℄ and for o
ean and atmospheri
 �ows [62; 72℄. The understanding

of these transitions is an extremely di�
ult problem due to the large number of

degrees of freedoms, large separation of times
ales and the non-equilibrium nature

of these �ows.

However, for for
ed-dissipated turbulent systems it is un
lear how to de�ne

the set of attra
tors for the dynami
s. Although, in the limit of weak for
ing

and dissipation, one would expe
t that the set of attra
tors would 
onverge to

the ones of the deterministi
 equation. In the 
ase of the 2D Euler equations,

equilibrium statisti
al me
hani
s in the form of the equilibrium Miller-Robert�

Sommeria theory allows for the predi
tion set of attra
tors for the dynami
s.

They are a subsets of the steady states of the 2D Euler equations, then equilibrium

statisti
al me
hani
s gives a �rst partial answer to the question of attra
tors.

Moreover, simulations of the 2D Navier-Stokes equations in the weak for
e

and dissipation limit showed that the dynami
s a
tually 
on
entrates pre
isely


lose to the set of the 2D Euler equations attra
tors [10℄. Interestingly, the same

simulation showed sporadi
 non-equilibrium phase transitions, where the system

spontaneously swit
hed between two apparently stable steady states resulting in

a 
omplete 
hange in the ma
ros
opi
 behavior (see �gure 4). If the for
es and

dissipation are weak, then these transitions are a
tually extremely rare, o

urring

on a times
ale mu
h longer than the dynami
al times
ale.

In su
h situations, when the turbulent �ow swit
hes at random times from one

type of attra
tor to another, a theoreti
al aim is to 
ompute the transition rate.

It is also often the 
ase that most transition paths from one attra
tor to another


on
entrate to a single path, then a natural aim is to 
ompute this most probable

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



8 Freddy Bou
het, Cesare Nardini, and Tomás Tangarife

Fig. 3: Figure taken from [3℄ showing random transitions between meta-stable orientations of

the magneti
 �eld in an experimental turbulent dynamo. The main azimuthal 
omponent of the

magneti
 �eld is shown in red.

Fig. 4: Figure taken from [10℄ showing rare transitions (illustrated by the Fourier 
omponent

of the largest y mode) between two large s
ale attra
tors of the periodi
 2D Navier-Stokes

equations. The system spends the majority of its time 
lose to the vortex dipole and parallel

�ows 
on�gurations.

path. In order a
hieve those aims, we will use a path integral representation of

the transition probabilities and study its semi-
lassi
al limit, in an asymptoti


expansion where the small parameter is the one that determines both the for
e

and dissipation amplitude. In this limit, if this semi-
lassi
al approa
h is relevant,

one expe
ts a large deviation result, similar to the one obtained through the

Freidlin-Wentzell theory[30℄. In order to illustrate in a pedagogi
al way the general

approa
h, we will treat in these le
tures the 
lassi
al 
ase of the Kramer model

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==
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(
omputation of the transition rate for a parti
le in a double well potential). We

will generalize the dis
ussion to a set of Langevin dynami
s that in
ludes the

two-dimensional Euler and Quasi-Geostrophi
 Langevin dynami
s, and �nally we

will dis
uss partial results for the two-dimensional Navier-Stokes equations when

detailed balan
e is not satis�ed. Those di�erent points are dis
ussed in se
tion

4.4.

1.3.2 Kineti
 theory of zonal jets

One example of spontaneous emergen
e of large-s
ale 
oherent stru
tures in geo-

physi
al �ows is the formation of zonal (east-west) jets. The 
ommon pi
tures

of Jupiter perfe
tly illustrate this fa
t: the surfa
e �ow is 
learly organized into

parallel, alternating zonal jets as shown in �gure 2, with also the presen
e of giant

and very stable vorti
es su
h as the Great Red Spot. Su
h large s
ale features are

on one hand slowly dissipated, mainly due to a large-s
ale fri
tion me
hanism, and

on the other hand maintained by the small-s
ale turbulen
e, through Reynolds'

stresses. The main me
hanism is thus a transfer of energy from the for
ing s
ale

(due to barotropi
 and baro
lini
 instabilities) to the turbulent s
ales and until

the s
ale of the jets.

An important point in this phenomenology is the fa
t that the turbulent �u
-

tuations are of very weak amplitude 
ompared to the amplitude of the zonal jet,

and that they evolve mu
h faster. This means that the typi
al time s
ale of ad-

ve
tion and shear of the �u
tuations by the jet is mu
h smaller that the typi
al

time s
ale of formation or dissipation of the whole jet. This time s
ale separation

is a very spe
i�
 property of the geophysi
al large-s
ale stru
tures.

In this turbulent 
ontext, the understanding of jet formation requires averag-

ing out the e�e
t of rapid turbulent degrees of freedom in order to des
ribe the

slow evolution of the jet stru
ture. Su
h a task, an example of 
losure, is usually

extremely hard to perform for turbulent �ows. Using the time-s
ale separation

mentioned earlier, we prove that it 
an be performed expli
itly in this problem.

This approa
h, 
alled a kineti
 theory by analogy with similar approa
hes in the

statisti
al me
hani
s of systems with long range intera
tions, is presented in se
-

tion 5.

1.4 A 
ontemporary approa
h of statisti
al me
hani
s: large

deviation theory

Onsager was the �rst to 
onsider a statisti
al me
hani
s explanation of two-

dimensional turbulent �ows [51℄. At the time he was s
ienti�
ally a
tive, Onsager

made a large number of de
isive 
ontributions to statisti
al me
hani
s theory:

solutions of the 2D Ising model, re
ipro
ity relations, 
ontributions to the sta-

tisti
al me
hani
s of ele
trolytes and turbulen
e, and so on. Sin
e that time the

theoreti
al approa
hes for treating statisti
al me
hani
s problems have been 
om-

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



10 Freddy Bou
het, Cesare Nardini, and Tomás Tangarife

pletely renewed. One of the main 
hanges has been the use of the language of

large deviation theory for more than 30 years. For instan
e, re
ent results in the

understanding of equilibrium statisti
al me
hani
s problems, proving �u
tuation

theorems (Onsager's re
ipro
ity relations generalized far from equilibrium), and

in dealing with non-equilibrium statisti
al me
hani
s problems, are all related to

large deviation theory.

Interestingly, as we dis
uss in these le
tures, the route proposed by Onsager in

his 1949 paper [51℄ in order to understand the self-organization of two-dimensional

�ows, led a few de
ades later to some of the �rst appli
ations of large deviation

theory to equilibrium statisti
al me
hani
s problems.

The theory of large deviations deals with the asymptoti
 behavior of the expo-

nential de
ay of the probabilities of rare or extreme events. The asso
iated limiting

parameter is usually taken to be the number of observations, the number of par-

ti
les, but 
an be other parameters, su
h as vanishing noise or the temperature

of a 
hemi
al rea
tion, or large time. Large deviation theory 
an be 
onsidered

a generalization of the 
entral limit theorem, with the re�nement of in
luding

information about the behavior of the tails of the probability density. The main

result of large deviation theory is the large deviation prin
iple, a result des
ribing

the leading asymptoti
 behavior of the tails or large deviations of the probability

distribution in the limit N → ∞. For instan
e, the large deviation prin
iple for a

random variable XN is

lim
N→∞

− 1

N
log[P (XN = x)] = I(x), (1)

where P is the probability density for the random variable XN , and I(x) is 
alled

the rate fun
tion. For instan
e, if XN = (1/N)
∑N
i=1 xi, where xi are independent

identi
ally distributed random variables then I(x) is given by Cramer's theorem.

Beside the appli
ations des
ribed in the previous se
tions, the aim of these

le
tures is to explain and derive heuristi
ally large deviation results for the equi-

librium statisti
al me
hani
s of the two-dimensional Euler and quasi-geostrophi


equations (equilibrium) and for the 2D Navier-Stokes or quasi-geostrophi
 equa-

tions with sto
hasti
 for
es (non-equilibrium). The large deviation result for the

equilibrium 
ase (se
tion 3) is derived through a generalization of Sanov theorem,

and leads to a formula for the probability of ma
rostates for the mi
ro
anoni-


al measures. The large deviation results for the non-equilibrium 
ases (se
tion

4.4) are derived through semi-
lassi
al limits in path integrals (or equivalently

the Freidlin-Wentzell framework) and lead to the evaluation of transition paths

and transition probabilities for bistable turbulent �ows, 
lose to non-equilibrium

phase transitions.

1.5 Organization of those le
tures

In se
tion 2, we state the equations of motion and their 
onservation laws. In se
-

tion 3, we 
onstru
t mi
ro
anoni
al invariant measures for the 2D Euler equations
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and dis
uss the entropy maximization problem in predi
ting the most probably

steady states on the 2D Euler equation. In se
tion 4.4, we dis
uss large devia-

tions for non-equilibrium problems and illustrate this using a simple a
ademi


example, the problem of 
omputation of transition rate for the Kramer problem,

followed by the appli
ation to the 2D Navier-Stokes equations. Finally, in se
tion

5 we dis
uss the kineti
 theory of zonal jets for the barotropi
 quasi-geostrophi


dynami
s.

2 The 2D Euler, barotropi
 Quasi Geostrophi
, and

sto
hasti
 Navier�Stokes equations

2.1 Equations of motion

The aim of this se
tion is to present the simplest model that des
ribes two-

dimensional and geophysi
al turbulent �ows: the two-dimensional Navier-Stokes

equation and the barotropi
 equation with sto
hasti
 for
ing. In the limit when

for
es and dissipation go to zero, the two-dimensional Navier-Stokes equation re-

du
es to the two-dimensional Euler equation. We des
ribe the 
onservation laws

for these equations and their in�uen
e on the dynami
s. The review [13℄ gives a

very brief introdu
tion to geophysi
al �uid dynami
s and the quasi-geostrophi


model. A more 
omplete introdu
tion is found in textbooks of geophysi
al �uid

dynami
s [53; 68℄.

We are interested in the non-equilibrium dynami
s asso
iated to the two-

dimensional sto
hasti
ally for
ed barotropi
 equations (also 
alled barotropi


Quasi-Geostrophi
 equations):

∂q

∂t
+ v [q − h] ·∇q = −αω + ν∆ω +

√
2αη, (2)

v = ez ×∇ψ, q = ω + h(y) = ∆ψ + h, (3)

where ω, v and ψ are respe
tively the vorti
ity, the non-divergent velo
ity, and

the streamfun
tion. For simpli
ity, in these le
tures we 
onsider the dynami
s on

a periodi
 domain D = [0, 2δπ) × [0, 2π) with aspe
t ratio δ. Then ψ is periodi


with the further 
ondition

∫
D dr ψ = 0. q is the potential vorti
ity, and h is a

given topography fun
tion with

∫
D dr h = 0. For h = 0, the barotropi
 equations

redu
es to the 2D Navier-Stokes equation.

The linear fri
tion term −αω models large s
ale dissipation. We 
onsider non-

dimensional equations, where a typi
al energy is of order 1 (see [13℄) su
h that ν
is the inverse of the Reynolds number and α is the inverse of a Reynolds number

based on the large s
ale fri
tion. We assume that the Reynolds numbers satisfy

ν ≪ α ≪ 1. In the limit of weak for
es and dissipation limα→0 limν→0, the 2D

Navier-Stokes equations 
onverge to the two-dimensional Euler equations for �nite

time, but the type of for
ing and dissipation determines to whi
h set of attra
tors
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the dynami
s evolve to over a very long time. The 
url of the for
ing η(x, t) is

a white in time Gaussian �eld de�ned by 〈η(x, t)η(x′, t′)〉 = C(x − x′)δ(t − t′),
where C is the 
orrelation fun
tion of a sto
hasti
ally homogeneous noise.

The two-dimensional Euler equations (h = 0), or the inertial barotropi
 equa-
tion (h 6= 0), are given by Eq. (2) with for
es and dissipation set to zero

(α = ν = 0).

2.2 Conservation laws for the inertial dynami
s

The kineti
 energy of the �ow is given by

E [q] = 1

2

∫

D
dr v2 =

1

2

∫

D
dr (∇ψ)2 = −1

2

∫

D
dr (q − h)ψ, (4)

where the last equality is obtained with an integration by parts. The kineti
 energy

is 
onserved for the dynami
s of the two-dimensional Euler and inertial barotropi


equations i.e. dE/dt = 0,. These equations also 
onserve an in�nite number of

fun
tionals, named Casimirs. They are related to the degenerate stru
ture of

the in�nite-dimensional Hamiltonian system and 
an be understood as invariants

arising from Noether's theorem [61℄. These fun
tionals are of the form

Cs[q] =
∫

D
s(q)dr, (5)

where s is any su�
iently regular fun
tion. We note that on a doubly-periodi


domain the total 
ir
ulation

Γ =

∫

D
q dr, (6)

is ne
essarily equal to zero: Γ = 0.
The in�nite number of 
onserved quantities are responsible for the equations

having an in�nite (
ontinuous) set of steady states (see se
tion 2 in [13℄). Any

of the in�nite number of steady states of the 2D Euler or inertial barotropi


equations satisfy

v ·∇q = 0.

For instan
e, if there is a fun
tional relation between the potential vorti
ity and

the streamfun
tion, i.e. q = ∆ψ = f(ψ), where f is any 
ontinuous fun
tion, then

using 2 one easily 
he
k that v ·∇q = 0. Physi
ally, these states are important

be
ause some of them a
t as attra
tors for the dynami
s.

There is also a strong empiri
al and numeri
al eviden
e that a 
omplex evolu-

tion of the two-dimensional Euler equations leads most of the times to attra
tors

that are steady states of the equations. The spe
i�
 fun
tion f that is rea
hed

after a 
omplex evolution 
an be predi
ted in 
ertain situation using equilibrium

statisti
al me
hani
al arguments presented in the next se
tion (see [13℄ for more

details).
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2.3 The 
onservation of the vorti
ity distribution

The two-dimensional Euler and inertial barotropi
 equations 
onserve the dis-

tribution of potential vorti
ity, i.e. the total area of a spe
i�
 potential vorti
ity

level set is 
onserved. As we explain now the 
onservation of the potential vorti
ity

distribution is equivalent to the 
onservation of all Casimirs.

We �rst prove that the potential vorti
ity distribution is 
onserved as a 
on-

sequen
e of Casimir 
onservation laws. We 
onsider the spe
ial 
lass of Casimir

(5):

C(σ) =

∫

D
H(−q + σ)dr, (7)

where H( · ) is the Heaviside step fun
tion. The fun
tion C(σ) returns the area

o

upied by all potential vorti
ity levels smaller or equal to σ. C(σ) is an invariant
for any σ and therefore any derivative of C(σ) is also 
onserved. Therefore, the

distribution of vorti
ity, de�ned as D(σ) = C′(σ), where the prime denotes a

derivation with respe
t to σ, is also 
onserved by the dynami
s. The expression

D(σ)dσ is the area o

upied by the vorti
ity levels in the range σ ≤ q ≤ σ + dσ.
Moreover, any Casimir 
an be written in the form

Cf [q] =
∫

D
dσ f(σ)D(σ).

The 
onservation of all Casimirs, Eq. (5), is therefore equivalent to the 
onserva-

tion of D(σ).
The 
onservation of the distribution of vorti
ity levels, as proven above, 
an also

be understood from the equations of motion. We �nd that Dq/Dt = 0, showing
that the values of the potential vorti
ity �eld are Lagrangian tra
ers. This means

that the values of q are transported through the non-divergent velo
ity �eld, thus

keeping the distribution un
hanged.

From now on, we restri
t ourselves to a K-level vorti
ity distribution. We

make this 
hoi
e for pedagogi
al reasons, but a generalization of the dis
ussion of

next se
tion to a 
ontinuous vorti
ity distribution is straightforward. The K-level

vorti
ity distribution is de�ned as

D(σ) =

K∑

k=1

Akδ(σ − σk), (8)

where Ak denotes the area o

upied by the vorti
ity value σk. The areas Ak are

not arbitrary, their sum is the total area

∑K
k=1 Ak = |D|. Moreover, the 
onstraint

(6), imposes the 
onstraint

∑K
k=1Akσk = 0.
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3 Equilibrium statisti
al me
hani
s and the mean �eld

variational problem as a large deviation result

3.1 Large deviation theory in 2D turbulen
e, the

equilibrium mean �eld variational problem

The �rst large deviation results in two-dimensional turbulen
e have been obtained

in the 
ontext of the theory for the 2D Euler equations. Mi
hel and Robert [44℄

have studied the large deviation of Young measures and have suggested that the

entropy of the Miller�Robert�Sommeria theory is the analogue of a large deviation

rate fun
tion. By 
onsidering a prior distribution for the vorti
ity invariants, in a

framework where the invariants are 
onsidered in a 
anoni
al ensemble rather than

in a mi
ro
anoni
al one, Bou
her and 
ollaborators [5℄ have given a derivation of a

large deviation result based on �nite dimensional approximations of the vorti
ity

�eld. The beginning of the nineties has also been a time of intense study of the

statisti
al me
hani
s of the point vortex model [4; 18; 27; 28; 38; 39℄, a spe
ial


lass of solution of the two-dimensional Euler equations. Among those study, large

deviations results for the equilibrium measures where also obtained.

The aim of this se
tion is to present a heuristi
 
onstru
tion of mi
ro
anoni
al

invariant measures for the 2D Euler equations. This 
onstru
tion primarily follows

the initial ideas of the previous works [5; 44℄, but is mu
h simpli�ed. Moreover, for

pedagogi
al reasons, the reading of this heuristi
 presentation does not imply any

knowledge of large deviation theory and avoids any te
hni
al dis
ussion. These

measures are 
onstru
ted using �nite dimensional approximation of the vorti
-

ity �eld, with N2
number of degrees of freedom. N2

is then the large deviation

parameter and the entropy appears as the analogue of the large deviation rate

fun
tion.

In order to state the main result, let us de�ne p(r, σ) as the lo
al probability

to observe vorti
ity values equal to σ at point r: p(r, σ) = 〈δ(ω(r) − σ)〉, where
δ is the Dira
 delta fun
tion (we 
onsider averaging 〈 · 〉 over the mi
ro
anoni
al

measure, see se
tion 3.2). We also de�ne ω(r) =
∫
dσ σp(r, σ) the lo
al vorti
ity

average. Then the large deviation rate fun
tion for p(r, σ) is S(E0) − S[p,E0]
where

S[p,E0] = S[p] ≡
∫

D

∑

k

pk log pk dr (9)

if the 
onstraints N [p] = 1, ∀k, A [pk] = Ak and E [ω] = E0 are satis�ed, and

S[p,E0] = −∞ otherwise, and where

S(E0) = sup
{p | N [p]=1}

{S[p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (10)

with E0, Ak and N , the energy, the vorti
ity distribution, and the probability

normalization de�ned in se
tion 3.3 respe
tively.

The interpretation of this result is that the most probable value for the lo-


al probability is the maximizer of the variational problem (10), and that the

probability to observe a departure from this most probable state is exponentially
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large, with parameter N2
and rate fun
tion (9). Furthermore, the 
lassi
al mean

�eld equation for the streamfun
tion ψ 
an be derived from (9), as dis
ussed in

referen
e [6℄.

In next se
tions, we de�ne pre
isely the mi
ro
anoni
al measure for the 2D Eu-

ler equations (se
tion 3.2) and prove that the entropy S[p,E0] is a large deviation
rate fun
tion for p (se
tion 3.3). This justi�es the mean �eld variational problem

(10).

3.2 Mi
ro
anoni
al measure

In order to properly 
onstru
t a mi
ro
anoni
al measure, we dis
retize the vor-

ti
ity �eld on a uniform grid with N2
grid points, de�ne a measure on the 
orre-

sponding �nite-dimensional spa
e and take the limit N → ∞. A uniform grid has

to be 
hosen in order to 
omply with a formal Liouville theorem for the 2D Euler

equations [14; 59℄.

We denote the latti
e points by rij =
(
i
N ,

j
N

)
, with 0 ≤ i, j ≤ N−1 and denote

ωij ≡ ω(rij) the vorti
ity value at point rij . The total number of points is N
2
.

As dis
ussed in the previous se
tion, we assume D(σ) =
∑K
k=1 Akδ(σ − σk).

For this �nite-N approximation, our set of mi
rostates (
on�guration spa
e) is

then

XN =
{
ωN = (ωij)0≤i,j≤N−1 | ∀i, j ωij ∈ {σ1, . . . , σK}

and ∀k # {ωij | ωij = σk} = N2Ak
}
.

Here, #(A) is the 
ardinal of set A. We note that XN depends on D(σ) through
Ak and σk (see (8)).

Using the above expression we de�ne the energy shell ΓN (E0, ∆E) as

ΓN (E0, ∆E) =
{
ωN ∈ XN | E0 ≤ EN

[
ωN
]
≤ E0 +∆E

}
,

where

EN =
1

2N2

N−1∑

i,j=0

v2
ij = − 1

2N2

N−1∑

i,j=0

ωijψij ,

is the �nite-N approximation of the system energy, with vij = v(rij) and ψij =
ψ(rij) being the dis
retized velo
ity �eld and streamfun
tion �eld, respe
tively.

∆E is the width of the energy shell. Su
h a �nite width is ne
essary for our dis
rete

approximation, as the 
ardinal of XN is �nite. Then the set of a

essible energies

on XN is also �nite. Let ∆NE be the typi
al di�eren
e between two su

essive

a
hievable energies. We then assume that ∆NE ≪ ∆E ≪ E0. The limit measure

de�ned below is expe
ted to be independent of ∆E in the limit N → ∞.

The fundamental assumption of statisti
al me
hani
s states that ea
h mi-


rostate in the 
on�guration spa
e is equiprobable. By virtue of this assumption,

the probability to observe any mi
rostate is Ω−1
N (E0, ∆E), where ΩN (E0, ∆E) is

the number of a

essible mi
rostates, i.e. the 
ardinal of the set ΓN (E0, ∆E). The
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�nite-N spe
i�
 Boltzmann entropy is de�ned as

SN (E0, ∆E) =
1

N2
log ΩN (E0, ∆E). (11)

The mi
ro
anoni
al measure is then de�ned through the expe
tation values of

any observable A. For any observable A[ω] (for instan
e a smooth fun
tional of

the vorti
ity �eld), we de�ne its �nite-dimensional approximation by AN
[
ωN
]
.

The expe
tation value of AN for the mi
ro
anoni
al measure reads

〈
µN (E0, ∆E), AN

[
ωN
]〉
N

≡
〈
AN

[
ωN
]〉
N
≡ 1

ΩN (E0, ∆E)

∑

ωN∈ΓN (E0,∆E)

AN
[
ωN
]
.

The mi
ro
anoni
al measure µ for the 2D Euler equation is de�ned as a limit of

the �nite-N measure:

〈µ(E0), A[ω]〉 ≡ lim
N→∞

〈
µN (E0, ∆E), AN

[
ωN
]〉
N
.

The spe
i�
 Boltzmann entropy is then de�ned as

S(E0) = lim
N→∞

SN (E0, ∆E). (12)

3.3 The mean �eld variational problem as a large deviation

result

Computing the Boltzmann entropy by dire
t evaluation of Eq. (12) is usually an

intra
table problem. However, we shall pro
eed in a di�erent way and show that

this alternative 
omputation yields the same entropy in the limit N → ∞. We

give heuristi
 arguments in order to prove that the 
omputation of the Boltzmann

entropy Eq. (12) is equivalent to the maximization of the 
onstrained variational

problem (10) (
alled a mean �eld variational problem). This variational problem

is the foundation of the RSM approa
h to the equilibrium statisti
al me
hani
s for

the 2D Euler equations. The essential message is that the entropy 
omputed from

the mean �eld variational problem (10) and from Boltzmann's entropy de�nition

(12) are the equal in the limit N → ∞. The ability to 
ompute the Boltzmann

entropy through this type of variational problems is one of the 
ornerstones of

statisti
al me
hani
s.

Our heuristi
 derivation is based on the same type of 
ombinatori
s arguments

as the ones used by Boltzmann for the interpretation of its H fun
tion in the

theory of relaxation to equilibrium of a dilute gas. This derivation doesn't use the

te
hni
alities of large deviation theory. The aim is to a
tually obtain the large

deviation interpretation of the entropy and to provide a heuristi
 understanding

using basi
 mathemati
s only. The modern mathemati
al proof of the relationship

between the Boltzmann entropy and the mean �eld variational problem involves

Sanov theorem.
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Ma
rostates are set of mi
ros
opi
 
on�gurations sharing similar ma
ros
opi


behaviors. Our aim is to properly identify ma
rostates that fully des
ribe the

main features of the largest s
ales of 2D turbulent �ow, and then to 
ompute

their probability or entropy.

Let us �rst de�ne ma
rostates through lo
al 
oarse-graining. We divide the

N ×N latti
e into (N/n)× (N/n) non-overlapping boxes ea
h 
ontaining n2
grid

points (n is an even number, and N is a multiple of n). These boxes are 
entered
on sites (i, j) = (In, Jn), where integers I and J verify 0 ≤ I, J ≤ N/n− 1. The
indi
es (I, J) label the boxes.

For any mi
rostate ωN ∈ ΓN , let f
k
IJ be the frequen
y to �nd the value σk in

the box (I, J)

F kIJ (ω
N ) =

1

n2

I+n/2∑

i=I−n/2+1

J+n/2∑

j=J−n/2+1

δ
d

(ωij − σk),

where δ
d

(x) is equal to one whenever x = 0, and zero otherwise. We note that for

all (I, J),
∑K

k=1 F
k
IJ(ω

N ) = 1.
A ma
rostate pN =

{
pkIJ
}
0≤I,J≤N/n−1;1≤k≤K , is the set of all mi
rostates of

ωN ∈ XN su
h that F kIJ (ω
N ) = pkIJ for all I, J , and k (by abuse of notation, and

for simpli
ity, pN =
{
pkIJ
}
0≤I,J≤N/n−1;1≤k≤K refers to both the set of values and

to the set of mi
rostates having the 
orresponding frequen
ies). The entropy of

the ma
rostate is de�ned as the logarithm of the number of mi
rostates in the

ma
rostate

SN [pN ] =
1

N2
log
(
#
{
ωN ∈ XN

∣∣
for all I, J, and k, F kIJ (ω

N ) = pkIJ
})
. (13)

Following an argument by Boltzmann, it is a 
lassi
al exer
ise in statisti
al me-


hani
s, using 
ombinatori
s and the Stirling formula, to prove that in the limit

N ≫ n≫ 1 , without taking into a

ount of the area 
onstraints Ak, the entropy
of the ma
rostate would 
onverge to

SN [pN ]
N≫n≫1∼ SN [pN ] = − n2

N2

N/n−1∑

I,J=0

K∑

k=1

pkIJ log pkIJ

if ∀I, J, N [pIJ ] = 1, and SN [pN ] ∼ −∞ otherwise, where N [pIJ ] ≡ ∑
k p

k
IJ .

The area 
onstraints are easily expressed as 
onstraints over pN : AN
[
pkN
]
≡

n2

N2

∑N/n−1
I,J=0 pkIJ = Ak and ∀I, J, N [pIJ ] = 1. An easy generalization of the above

formula gives

SN [pN ]
N≫n≫1∼ SN [pN ]

if ∀k, AN
[
pkN
]
= Ak, and SN [pN ] ∼ −∞ otherwise. In the theory of large devia-

tion, this result 
ould have been obtained using Sanov's theorem. We now 
onsider

a new ma
rostate (pN , E0) whi
h is the set of mi
rostates ωN with energy EN
[
ωN
]

verifying E0 ≤ EN
[
ωN
]
≤ E0+∆E (the interse
tion of ΓN (E0, ∆E) and pN ). For

a given ma
rostate pN , not all mi
rostates have the same energy. The 
onstraint
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on the energy thus 
an not be re
ast as a simple 
onstraint on the ma
rostate pN .
Then one has to treat the energy 
onstraint in a more subtle way. The energy is

EN
[
ωN
]
= − 1

2N2

N−1∑

i,j=0

ωNijψ
N
ij .

The streamfun
tion ψNij is related to ωN through

ψij =
1

N2

N−1∑

i′,j′=0

Gij,i′j′ω
N
i′j′ ,

where Gij,i′j′ is the Lapla
ian Green fun
tion in the domain D. In the limit

N ≫ n≫ 1, the variations of Gij,i′j′ for (i
′, j′) running over the small box (I, J)

are vanishingly small. Then Gij,i′j′ 
an be well approximated by their average

value over the boxes GIJ,I′J′
. Then

ψij ≃ ψIJ ≡ 1

N2

N/n−1∑

I′,J′=0

GIJ,I′J′

I+n/2∑

i′=I−n/2+1

J+n/2∑

j′=J−n/2+1

ωNi′j′ =
n2

N2

N−1∑

I′,J′=0

GIJ,I′J′ωNIJ ,

where the 
oarse-grained vorti
ity is de�ned as

ωNIJ =
1

n2

I+n/2∑

i′=I−n/2+1

J+n/2∑

j′=J−n/2+1

ωNi′j′ .

We note that, over the ma
rostate pN , the 
oarse-grained vorti
ity depends on

pN only:

ωNIJ =

K∑

k=1

pkIJσk for ωN ∈ pN .

Using similar arguments, it is easy to 
on
lude that in the limit N ≫ n ≫ 1 the

energy of any mi
rostate of the ma
rostate pN is well approximated by the energy

of the 
oarse-grained vorti
ity

EN
[
ωN
] N≫n≫1∼ EN

[
ωNIJ

]
= − n2

2N2

N/n−1∑

I,J=0

ωNIJψ
N
IJ .

Then the Boltzmann entropy of the ma
rostate is

SN [pN , E0]
N≫n≫1∼ SN [pN ] (14)

if ∀k, N [pkN ] = 1, AN
[
pkN
]
= Ak and EN

[
ωNIJ

]
= E0, and SN [pN , E0] ∼ −∞

otherwise.

Consider PN,E0(pN ) to be the probability density to observe the ma
rostate

pN in the �nite-N mi
ro
anoni
al ensemble with energy E0. By de�nition of the
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mi
ro
anoni
al ensemble of the entropy SN (E0) (see Eq. (11) and the pre
eding

paragraph), we have

logPN,E0(pN )
N→∞∼ N2 [SN [pN , E0]− SN (E0)] . (15)

From the general de�nition of a large deviation result given by Eq. (1), we 
learly

see that formula (14) is a large deviation result for the ma
rostate pN in the mi
ro-


anoni
al ensemble. The large deviation parameter is N2
and the large deviation

rate fun
tion is −SN [pN , E0] + SN (E0).
We now 
onsider the 
ontinuous limit. The ma
rostates pkN are now seen as

the �nite-N approximation of pk, the lo
al probability to observe ω(r) = σk:
pk(r) = 〈δ(ω(r)−σk)〉. The ma
rostate is then 
hara
terized by p = {p1, . . . , pK}.
Taking the limit N ≫ n ≫ 1 allows us to de�ne the entropy of the ma
rostate

(p,E0) as

S[p,E0] = S[p] ≡
∑

k

∫

D
pklogpk dr (16)

if ∀k N [pk] = 1, A [pk] = Ak and E [ω] = E0, and S[p,E0] = −∞ otherwise. In

the same limit, it is 
learly seen from de�nition (13) and result (16) that there

is a 
on
entration of mi
rostates 
lose to the most probable ma
rostate. The

exponential 
on
entration 
lose to this most probable state is a large deviation

result, where the entropy appears as the opposite of a large deviation rate fun
tion

(up to an irrelevant 
onstant).

The exponential 
onvergen
e towards this most probable state also justi�es the

approximation of the entropy with the entropy of the most probable ma
rostate.

Thus, in the limit N → ∞ we 
an express the Boltzmann entropy, Eq. (12), as

S(E0) = sup
{p | N [p]=1}

{S[p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (17)

where p = {p1, . . . , pK} and ∀ r, N [p](r) =
∑K

k=1 pk(r) = 1 is the lo
al nor-

malization. Furthermore, A[pk] is the area of the domain 
orresponding to the

vorti
ity value ω = σk. The fa
t that the Boltzmann entropy S(E0) Eq. (12) 
an
be 
omputed from the variational problem (17) is a powerful non-trivial result of

large deviation theory.

3.4 Appli
ations of equilibrium statisti
al me
hani
s

In the two previous se
tions, we have de�ned the mi
ro
anoni
al measure for

the two-dimensional Euler and quasi geostrophi
 equations, and we have proven

that the logarithm of the probability of a ma
rostate p is given by the ma
rostate

entropy (16). We 
an 
on
lude that most of the mi
rostates will 
orrespond to the

most probable ma
rostate, the one that a
tually maximize the variational problem

(17). This most probable ma
rostate is 
alled the equilibrium ma
rostate. This

means that if we take a random mi
rostate, it will nearly surely have the same
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Observation (Voyager)

Statisti
al Equilibrium

Fig. 5: Left: the observed velo
ity �eld is from Voyager spa
e
raft data, from Dowling and

Ingersoll [25℄ ; the length of ea
h line is proportional to the velo
ity at that point. Note the

strong jet stru
ture of width of order R, the Rossby deformation radius. Right: the velo
ity

�eld for the statisti
al equilibrium model of the Great Red Spot. The a
tual values of the jet

maximum velo
ity, jet width, vortex width and length �t with the observed ones. The jet is

interpreted as the interfa
e between two phases; ea
h of them 
orresponds to a di�erent mixing

level of the potential vorti
ity. The jet shape obeys a minimal length variational problem (an

isoperimetri
al problem) balan
ed by the e�e
t of the deep layer shear.

velo
ity as the one of the equilibrium ma
rostate. As a 
onsequen
e, we 
on
lude

that equilibrium ma
rostates are natural 
andidates to model self organized large

s
ale turbulent �ows, like for instan
e the Great Red Spot of Jupiter shown on

�gure (1).

A number of works have 
onsidered the 
omparison of self-organized turbu-

lent �ows with equilibrium ma
rostates. Interested readers will �nd 
ompari-

son with experiments and numeri
al simulations des
ribed in the review [64℄,

whereas models of geophysi
al �ows, for instan
e the Great Red Spot of Jupiter,

o
ean mesos
ale vorti
es, strong mid basin jets similar to the Gulf Stream or

the Kuroshio are dis
ussed in the review [16℄. Re
ent appli
ations to model the

verti
al stru
ture of o
eans 
an be found in the papers [70; 71℄.

As an example, �gure 5 shows the 
omparison of the observed velo
ity �eld

for the Great Red Spot of Jupiter with the velo
ity �eld of an equilibrium

ma
rostate of the quasi-geostrophi
 model. The theoreti
al analysis of this equi-

librium ma
rostate [11℄ is based on an analogy with Van Der Walls�Cahn�Hilliard

model of �rst order transition and the shape of the strong jet obeys a minimal

length variational problem (an isoperimetri
al problem) balan
ed by the e�e
t of

the deep layer shear (see [16℄ for more details).

Another example of equilibrium predi
tion is the phase diagram of statisti
al

equilibria for the two-dimensional Euler equation on a doubly periodi
 domain

(torus). This phase diagram (�gure 6) shows that the statisti
al equilibria are

either dipoles (one 
y
lone and one anti
y
lone) or parallel �ows. This example

is further dis
ussed in the work [10℄ and the review [16℄. This equilibrium phase

diagram has also been used in order to predi
t non-equilibrium phase transitions

[10℄ as is dis
ussed in se
tion 4.4.
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Fig. 6: Bifur
ation diagrams for statisti
al equilibria of the two-dimensional Euler equations in

a doubly periodi
 domain a) in the g-a4 plane, g is related to the domain aspe
t ratio and a4 to

the fourth order moment of the vorti
ity distribution (please see [16℄). b) obtained numeri
ally

in the E − a4 plane, E is the energy, in the 
ase of doubly periodi
 geometry with aspe
t ratio

δ = 1.1. The 
olored insets are streamfun
tion and the inset 
urve illustrates good agreement

between numeri
al and theoreti
al results in the low energy limit.

4 Non equilibrium phase transitions, path integrals, and

instanton theory

The aim of this se
tion is to dis
uss non-equilibrium phase transitions in turbulent

�ows, more spe
i�
ally for the dynami
s of the two-dimensional Navier�Stokes

equations with random for
es, quasi-geostrophi
 dynami
s with random for
es,

or related dynami
s. We want to dis
uss simple examples for whi
h situations

with rare transitions between two attra
tors exist (bistability). We will use path

integrals and large deviations in order to 
ompute the most-probable paths for

those transitions and the transition rates.

In order to give a pedagogi
al presentation of path integrals and large devia-

tion theory for sto
hasti
 dynami
s we �rst dis
uss the extremely 
lassi
al 
ase

of the Kramer problem: the over-damped dynami
s of a parti
le in a double-

well potential, in se
tion 4.1. We generalize these results to an abstra
t set of

dynami
s, 
alled Langevin dynami
s, in se
tion 4.2. We apply these results to

two-dimensional Euler and Quasi-Geostrophi
 Langevin dynami
s in se
tion 4.3,

for whi
h we are able to predi
t bistability, 
ompute transition rates and the most

probable transition paths. Finally we dis
uss path integral approa
hes and a
tion

minimizer for the sto
hasti
 Navier-Stokes equations in a non-equilibrium 
ontext

in se
tion 4.4.
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4.1 Large deviations for the overdamped Langevin dynami
s

We wish �rst to give a pedagogi
al des
ription of large deviation theory in non-

equilibrium systems , more spe
i�
ally for dynami
s 
onsisting of sto
hasti


di�erential equations. Therefore, we begin by applying large deviation theory to

a simple a
ademi
 example of an over-damped parti
le in a double-well potential

(the Kramer problem) where a large deviation result exists. We will show that

we 
an 
ompute the transition rate for the motion of the parti
le from one well

to the other and that the result is an Arrhenius fa
tor (it is proportional to the

exponential of the energy barrier height between the two wells). In fa
t, this is a

large deviation result.

This se
tion develops 
lassi
al ideas. We use the path integral formalism for

sto
hasti
 pro
esses [52; 74℄. Similar results are dis
ussed by mathemati
ians in

the framework of the Freidlin-Wentzell theory [30; 67℄. We are mu
h interested by

the time-reversal symmetries of the a
tion and its 
onsequen
e for the symmetry

between relaxation and �u
tuation paths, and its 
onsequen
es for the 
ompu-

tation of the most probable transition (instanton). Those symmetries are dis
uss

mu
h less often than the other material, but there are also very 
lassi
al (some

people say it dates from Onsager, we do not know exa
tly).

4.1.1 The overdamped Langevin dynami
s

We 
onsider a single overdamped parti
le in a 1D double-well potential V (x)
and subje
ted to random for
es due to a small 
oupling to a thermal bath. For

simpli
ity we 
onsidered the overdamped limit, for whi
h the dynami
s of the

parti
le position x is governed by the sto
hasti
 di�erential equation

ẋ = −dV

dx
+

√
2

β
η, (18)

where η is a random white noise with a Gaussian distribution 
hara
terized by

E [η(t)η(t′)] = δ(t−t′), V (x) is a double well potential (see Fig. 7), and β = 1/kBT
where T is the temperature. In the deterministi
 situation, when 1/β = 0, the
parti
le relaxes to one of the two stable steady states of the potential V , i.e. it

onverges either to x = −1 or to x = 1. In the presen
e of thermal noise, the

parti
le may gain enough energy to jump the potential barrier at x = 0 and

settle in the other potential well. If the for
ing is weak, i.e. 1 ≪ β∆V , then
the jumps between wells will be rare events and will be statisti
ally independent

from one another. They will then be des
ribed by a Poisson pro
ess 
hara
terized

by a transition rate λ. We will show that one 
an apply the theory of large

deviations in order to 
ompute λ. Moreover the theory of large deviation will lead

to the 
on
lusion that most of the transition paths 
on
entrate 
lose to the most

probable transition path. As will be dis
ussed more pre
isely below, this most

probable transition path in this situation is 
alled an instanton.

In order to obtain these results, we will use formal 
omputations based on a

path integral formulation of the transition probabilities for the sto
hasti
 pro
ess
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(18). Su
h a path integral formulation is referred as Onsager�Ma
hlup formal-

ism, as Onsager and Ma
hlup �rst proposed it, few years after the path integral

formulation of quantum me
hani
s by Feynman.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

V
(x

)

x

∆V

Fig. 7: Graph of the double well potential V (x) = (x2 − 1)2/4. We observe two stable steady

states at x = ±1 and a saddle at x = 0 with height ∆V = 1/4.

4.1.2 The transition probability as a path integral

To give a simple understanding of the Onsager-Ma
hlup formalism, we �rst 
on-

sider a ve
tor η = {ηi}1≤i≤N of independent Gaussian random variables, with

zero mean E(ηi) = 0 and 
ovarian
e E(ηiηj) = δij . By de�nition, the probability

measure of η is the Gaussian measure

dµ = exp

(
−1

2

N∑

i=1

η2i

)
N∏

i=1

dηi√
2π
. (19)

The Euler approximation of the Langevin equation (18) is, within the Ito 
onven-

tion,

xi = xi−1 −∆t
dV

dx
(xi−1) +

√
2∆t

β
ηi (20)

for 1 ≤ i ≤ N and with x0 = x(0) a given initial state. The probability measure

of a parti
ular path x = {xi}1≤i≤N is given by inverting (20) and inserting it in

(19),

dµ = exp

(
−β
4

N∑

i=1

(
xi − xi−1

∆t
+

dV

dx
(xi−1)

)2

∆t

)
J(η|x)

N∏

i=1

dxi√
2π
. (21)

In this expression, J(η|x) is the Ja
obian of the 
hange of variable η → x. In the

Ito 
onvention (20), the 
orresponding matrix is lower-triangular with ones in the

diagonal, so that J(η|x) = 1.
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The measure of a Gaussian sto
hasti
 pro
ess η(t) of zero mean E[η(t)] = 0
and 
ovarian
e E[η(t)η(t′)] = δ(t− t′), on a time interval [0, T ] with T = N∆t, is
the formal generalization of the above �nite dimensional measure (19),

dµ = exp

(
−1

2

∫ T

0

η2(t)dt

)
D[η]. (22)

The di�erential element D[η] in the above expression is the formal limit of the

�nite-dimensional quantity

∏N
i=1

dηi√
2π

for N → ∞, ∆t → 0, where ηi = η(i∆t) =

η(iT/N). People well trained in mathemati
s know the di�
ulty to de�ne su
h

an obje
t, but we will keep our dis
ussion at a formal level and state that this

formal notation 
ontains all the mathemati
al subtleties related to the limit N →
∞, ∆t → 0. Then, the probability measure of a parti
ular traje
tory {x(t)}0≤t≤T
is also the formal limit of (21),

dµ = exp

(
−β
4

∫ T

0

(
ẋ+

dV

dx

)2

dt

)
J [η|x]D[x], (23)

where J [η|x] is the Ja
obian of the 
hange of variable η → x, and is also equal to

one (we refer to [74℄ for a more general treatment, noting that [74℄ a
tually use

the Stratonovi
h 
onvention).

The transition probability from an initial state x0 at time 0 to a �nal state xT
at time T is the sum over all possible paths {x(t)}0≤t≤T su
h that x(0) = x0 and
x(T ) = xT of the probability of a single path (23). Su
h a sum 
an be formally

written as the path integral

P (xT , T ;x0, 0) =

∫ x(T )=xT

x(0)=x0

exp

(
−β
2
A[x]

)
D[x], (24)

with the a
tion fun
tional

A[x] =
1

2

∫ T

0

(
ẋ+

dV

dx

)2

dt. (25)

From (24), it is 
lear that the most probable traje
tories with pres
ribed initial

and �nal states are minimizers of the a
tion with pres
ribed initial and �nal point.

The optimal a
tion is denoted

A(x0, xT , T ) = min {A[x] | x(0) = x0, x(T ) = xT } .

4.1.3 Flu
tuation paths

When the initial point x0 = xa belongs to an attra
tor of the deterministi
 dy-

nami
s (for the Kramer problem, if x0 = xa = ±1 is a stable �xed points), it

is expe
ted that the a
tion A(xa, X, T ) de
reases with time. The a
tion minima

starting from one attra
tor and having an in�nite duration will thus play an im-
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portant role. Moreover, those in�nite time a
tion minimizers are essential be
ause

the transition probability P (X,T ;xa, 0) 
onverges to the stationary distribution

of the sto
hasti
 pro
ess when the time T goes to in�nity. Those a
tion minimizers

starting from one attra
tor and with an in�nite duration are 
alled �u
tuation

paths, they solve

A(xa, X,∞) = min
{
A[x] | lim

T→∞
x(−T ) = xa, x(0) = X

}
.

4.1.4 Relaxation paths

We 
onsider a state X that belongs to the basin of attra
tion of an attra
tor

xa of the deterministi
 dynami
s. The relaxation path starting at x, denoted
{xr(t)}0≤t≤T is de�ned by

ẋr = −dV

dx
(xr)

with initial 
onditions xr(0) = X . As the path 
onverges to xa, we have xr(+∞) =
xa. Using the expression of the a
tion (25), we see thatA[xr ] = 0, as the relaxation
path is a deterministi
 solution, and we also noti
e that A[x] ≥ 0 for any path

{x(t)}0≤t≤T . As a 
onsequen
e, relaxation paths are global minimizers of the

a
tion A[x]. This is be
ause following the deterministi
 dynami
s xr in order to

rea
h the attra
tor xa starting fromX doesn't require any sto
hasti
 perturbation,

so that the 
ost is zero and the probability is maximal.

4.1.5 Time-reversal symmetry and the relation between �u
tuation

and relaxation paths

In order to 
hara
terize �u
tuations paths and instantons, we will take pro�t of

the time-reversal symmetry of the over-damped Langevin dynami
s. We 
onsider

a path {x(t)}0≤t≤T and the reversed path R[x] = {x(T − t)}0≤t≤T . The a
tion of

the reversed path reads

A[R[x]] =
1

2

∫ T

0

(
d

dt
R[x] +

dV

dx
(R[x])

)2

dt =
1

2

∫ T

0

(
−ẋ(t′) + dV

dx
(x(t′))

)2

dt′,

with the 
hange of variable t′ = T − t. Then, writing

(
ẋ− dV

dx

)2

=

(
ẋ+

dV

dx

)2

− 4ẋ
dV

dx
=

(
ẋ+

dV

dx

)2

− 4
d

dt
V (x),

we get

A[R[x]] = A[x] − 2 (V (x(T ))− V (x(0))) . (26)

Plugging this relation into the path integral expression of the transition probabil-

ity (24), we obtain
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P (R[xT ], T ;R[x0], 0) = P (xT , T ;x0, 0) exp

(
V (x(T ))− V (x(0))

kBT

)
.

We re
ognize the Gibbs stationary distribution of the over-damped Langevin equa-

tion PS(x) =
1
Z e

−V (x)/kBT
, so that the above expression gives the detailed balan
e

relation

P (xT , T ;x0, 0)PS(x0) = P (x0, T ;xT , 0)PS(xT ).

We have thus proven that detailed balan
e is a 
onsequen
e of the time-reversal

symmetry, as expe
ted on general ground.

We now 
onsider the �u
tuation path from one attra
tor xa to any point X of

its basin of attra
tion. Using relation (26) and the fa
t that the a
tion is always

positive, we have

A[x] ≥ 2 (V (x(T ))− V (x(0))) , (27)

with equality if and only if x is a minimizer of the reversed a
tion A[R[x]]. If the
initial state is an attra
tor and the �nal state is another point in the asso
iated

basin of attra
tion, the reversed a
tion A[R[x]] is naturally minimized by the

relaxation path R[x] = xr that goes from X to the attra
tor,

d

dt
R[x] = −dV

dx
(R[x])

with R[x](0) = X and R[x](+∞) = xa. Then the minimizer of A[x] is the reversed
relaxation path. We thus 
on
lude that the �u
tuation path from xa to X , is the

time reversed of the relaxation path from X to xa. This situation is s
hemati
ally

represented in �gure 8.

4.1.6 Instanton and large deviation prin
iple

We de�ne the instanton as the most probable path that go from one attra
tor

x−1 = −1 to the other one x1 = 1 in an in�nite time. More pre
isely we 
onsider

xT the minimizer of variational problemmin
{
A[x] | x

(
−T

2

)
= x−1, x

(
T
2

)
= x1

}
,

and the instanton is the limit when T → ∞ of xT . The instanton a
tion is

A(x−1, x1) = lim
T→∞

min

{
A[x] | x

(
−T

2

)
= x−1 and x

(
T

2

)
= x1

}
,

As will soon be
ome 
lear, instantons are related to the most probable transition

paths, and their a
tion to the transition rate λ.
From the previous dis
ussion, it is easily understood that instantons are de
om-

posed into two parts. First, there is the �u
tuation path from x−1 to the saddle

xs = 0, whi
h is the reverse of the relaxation path from xs to x−1. The a
tion of

this part of the traje
tory is given by (26), it is A[R[xr ]] = 2 (V (xs)− V (x−1)) =
2∆V , where ∆V is the potential barrier height. The se
ond part of the instan-

ton traje
tory is the relaxation path from the saddle xs to the �nal attra
tor x1.
The a
tion of this relaxation path is zero, so that the total instanton a
tion is

A[x∗] = 2∆V .
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FluctuationRelaxation

x
0

x

Fig. 8: S
hemati
 representation of the

�u
tuation and relaxation paths between

an attra
tor of the deterministi
 dynam-

i
s x0 and another point X in the basin of

attra
tion of x0, for the over-damped dy-

nami
s. The relaxation path is the deter-

ministi
 traje
tory from x to x0, and the

�u
tuation path is the time-reversed traje
-

tory. Both traje
tories are the most prob-

able paths with the asso
iated initial and

�nal states.

Relaxation

x
0

Fluctuation

x
1 x

p

Fig. 9: Flu
tuation and relaxation paths be-

tween an initial position x0 and an attra
tor x1,
for the full Langevin dynami
s 30. The �u
tua-

tion path (reversed relaxation path) is obtained

by reversal of time, so the momentum is 
hanged

as p → −p. Both traje
tories are the most prob-

able paths with the asso
iated initial and �nal


onditions.

A more pre
ise analysis shows that as both the �u
tuation path to the saddle

and the relaxation path last for an in�nite time (an in�nite time is needed to quit

the attra
tor and an in�nite time is needed to rea
h the saddle). This explains

the de�nition of the instanton through the limit of the �nite time minimizer xT .
One 
an also understand that any temporal translation of an instanton is another

minimizer from on attra
tor x−1 = −1 to the other one x1 = 1 in an in�nite

time. This degenera
y is related to the notion of a �free-instanton-mole
ule� gas

approximation and has the 
onsequen
e that for time T ≫ 1, the transition

probability is proportional to time T :

P (x1, T ;x−1, 0)
T≫1∼ λT.

We refer to [19℄ for a detailed dis
ussion.

In the limit of small for
ing 1 ≪ β∆V , the distribution given by the path

integral (24) is 
on
entrated around its most probable state, the instanton we

have determined. We 
an thus apply a saddle-point approximation in order to get

the transition probability Pt,

lim
β→∞

− 1

β
log(Pt) = ∆V. (28)

Formula (28) states that the transition probability for observing the rare transition

between the two potential wells, in the limit of the weak noise limit, is proportional

to the exponential of the barrier height∆V . Su
h a result is 
alled a large deviation
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prin
iple for the probability Pt. We re
over the exponential fa
tor of the Arrhenius

formula for the transition rate

λ =
1

τ
exp

(
− ∆V

kBT

)
(29)

where ∆V is the energy barrier height and kBT is the temperature.

The 
omputation of the prefa
tor 1/τ goes beyond a large deviation result. It

was already 
omputed by Kramer, for an overdamped Kramer dynami
s. It was

the subje
t of Langer theory for systems with many degrees of freedom. Alterna-

tively, it 
an be 
omputing in the path integral framework by 
omputing the path

integrals at next order, 
omputing the properties of the Gaussian pro
esses 
lose

to the instanton, and treating 
orre
tly the subtleties related to the instanton de-

genera
y due to time translation. Su
h a 
omputation 
an be found for example

in the referen
e [19℄. The result is

τ = 2π

(
d2V

dx2
(x0)

d2V

dx2
(x−1)

)−1/2

.

4.1.7 Generalization to the inertial Langevin dynami
s

We 
onsider now the dynami
s of a parti
le in the same double-well potential,

with random for
es, but without the over-damped approximation. The position

and momentum of the parti
le {x, p} satisfy

{
ẋ = p

ṗ = −dV

dx
− αp+

√
2α
β η.

(30)

In this 
ase, the time-reverse of a given path {x(t), p(t)}0≤t≤T is given by I [x, p] =
{x(T − t),−p(T − t)}0≤t≤T , as represented in �gure 9. It is easily proven that the

a
tion of the reversed a
tion path satis�es a relation similar to 26. Then, as in the

overdamped 
ase, one easily proves that the �u
tuation paths is the time reverse

of the relaxation paths. As in the over-damped 
ase, instantons from one attra
tor

to the other are 
omposed of a �u
tuation path (time reversed relaxation path)

from the �rst attra
tor {x−1 = −1, p−1 = 0} to the saddle {0, 0}, and a relaxation

path from the saddle to the �nal attra
tor {1, 0}.

4.2 Langevin dynami
s with potential G

The aim of this se
tion is to generalize the results dis
ussed for the Kramer model

in se
tion 4.1 to a 
lass of dynami
s that 
orresponds to systems 
oupled with

equilibrium (thermal) baths. The 
onsider dynami
s with Liouville theorem (for

instan
e Hamiltonian dynami
s), with dissipation whi
h are the gradient of a


onserved quantity and sto
hasti
 for
es with Einstein type relations. For those
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Langevin dynami
s, we prove detailed balan
e (sometimes in a generalized form),

we prove that the �u
tuation paths are the time reversed of the relaxation paths,

and we des
ribe the instantons.

Whereas su
h Langevin dynami
s are very 
ommon in physi
s, the dis
ussion

below is original. As far as we know we are the �rst to des
ribe this general

framework, espe
ially for the 
ase when the potential is not the Hamiltonian but

another 
onserved quantity. The aim is to apply this framework to dynami
s that

in
lude the two-dimensional Euler and quasi-gestrophi
 dynami
s.

4.2.1 De�nition of Langevin dynami
s

In this se
tion we 
onsider the deterministi
 dynami
s

∂q

∂t
= F [q] (31)

where q is either a �nite dimensional variable or a �eld.

If q ∈ RN
, the dynami
s is

∂qi
∂t = Fi [q]. We then assume that this dynam-

i
al system 
onserves the Liouville measure

∏N
i=1 dqi, or equivalently that the

divergen
e of the ve
tor �eld F is zero

∇.F ≡
N∑

i=1

∂Fi
∂qi

= 0.

We 
all this property a Liouville theorem.

If q is a �eld (for instan
e a two-dimensional vorti
ity or potential vor-

ti
ity �eld), de�ned over a domain D, F [q] (r) is a quantity 
omputed from

the �eld q at any point r. For instan
e for the Quasi-Geostrophi
 equation

F [q] = −v [q − h] ·∇q (r) . We 
ontinue the dis
ussion for a �eld equation only.

For any fun
tional K, δK
δq(r) is the fun
tional derivative of K at point r, a general-

ization of the usual derivative, su
h that for any variation δq, at linear order the
�rst variations of K are given by

δK =

∫

D

δK
δq(r)

δq (r) dr.

We assume that a Liouville theorem holds for the dynami
s (31), in the sense

that the formal generalization of the �nite dimensional Liouville theorem

∇.F ≡
∫

D

δF
δq(r)

(r) dr = 0,

is veri�ed.

We also assume that this dynami
al system has a 
onserved quantity G:
dG/dt = 0. From (31), we see that this is equivalent to
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∫

D
F [q] (r)

δG
δq(r)

[q] dr = 0, (32)

for any q. Those hypothesis are veri�ed, for instan
e if the dynami
al system is

an Hamiltonian system

F(q) = {q,H} ,
where {., .} is a Poisson bra
ket, and G one of the 
onserved quantity of the

Hamiltonian system, for instan
e G = H. We stress however that G does not need

to be H.

If the Liouville hypothesis is veri�ed and G is a 
onserved quantity, we 
all a

Langevin dynami
s for the potential G the sto
hasti
 dynami
s

∂q

∂t
= F [q] (r) − α

∫

D
C(r, r′)

δG
δq(r′)

[q] dr′ +
√
2αγη, (33)

where we have introdu
ed a sto
hasti
 for
e η, whi
h we assume to be a Gaussian

pro
ess, white in time, and 
orrelated as E [η(r, t)η(r′, t′)] = C(r, r′)δ(t − t′). As
it is a 
orrelation fun
tion, C has to be a symmetri
 positive fun
tion: for any

fun
tion φ over D ∫

D

∫

D
φ (r)C(r, r′)φ (r′)drdr′ ≥ 0, (34)

and C(r, r′) = C(r′, r). For simpli
ity, we assume in the following that C is positive

de�nite and has an inverse C−1
su
h that

∫

D
C(r, r1)C

−1(r1, r
′)dr1 = δ (r− r′) .

The major property of a Langevin dynami
s is that the stationary probability

density fun
tional is known a-priori. It is

Ps[q] =
1

Z
exp

(
−G[q]

γ

)
,

where Z is a normalization 
onstant. At a formal level, this 
an be 
he
ked eas-

ily by writing the Fokker-Plan
k equation for the evolution of the probability

fun
tionals. Then the fa
t that Ps is stationary readily follows from the Liouville

theorem and the property that G is a 
onserved quantity for the deterministi


dynami
s.

4.2.2 Reversed Langevin dynami
s

We 
onsider I a linear involution on the spa
e of �elds q (I is a linear fun
tional

with I2 = Id). We de�ne the reversed Langevin dynami
s with respe
t to I as

∂q

∂t
= Fr [q] (r) − α

∫

D
Cr(r, r

′)
δGr
δq(r′)

[q] dr′ +
√
2αγη, (35)
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