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Foreword

Following the previous shools, whih have taken plae in Kazimierz every two

years sine 2005, the Institute of Theoretial Physis of the University of Warsaw

organized the 5th Warsaw Shool of Statistial Physis (June 22th to 29th, 2013).

The program of the shool was essentially omposed of six ourses orresponding

to various areas of researh in the �eld of statistial physis. Six distinguished

sientists presented pedagogial series of letures bringing a lear explanation of

basi theoretial ideas, and enouraging further researh. The letures were at-

tended by PhD students, postgraduate researhers, and also by more experiened

sientists interested in getting aquainted with a new �eld.

The present volume ontains the texts of the ourses. We are grateful to the

invited speakers for their willingness to make their leture notes ready for pu-

bliation. We do hope the volume will be useful not only to the partiipants of

the shool but also to all those interested in the urrent development of ideas in

statistial physis.

It is also a pleasure to aknowledge all those individuals and organizations

(listed overleaf) who ontributed to the suess of the shool.

Sienti� Organizing Committee:

Bogdan Cihoki

Marek Napiórkowski

Jarosªaw Piaseki

For further information about the Shools see:

http://www.fuw.edu.pl/∼wssph/
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Sponsors

Faulty of Physis, University of Warsaw

Ministry of Siene and Higher Eduation

Loal Organizing Committee

Bogdan Cihoki - Chair

Paweª Jakubzyk - Seretary

Piotr Szymzak

Karol W�doªowski
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1

Non-equilibrium Statistial Mehanis of

the Stohasti Navier�Stokes Equations

and Geostrophi Turbulene

Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

Abstrat Two-dimensional and geophysial turbulent �ows have the property to

self organize and reate large sale oherent jets and vorties. This is for instane

one of the major proesses for the dynamis of Earth's atmosphere. Following On-

sager initial insight, based on onjugated works by mathematiians and physiists,

this fundamental physial proess has found some explanations in the framework

of statistial mehanis. An important step, initiated twenty years ago, has been

the study of the equilibrium statistial mehanis for the 2D Euler and the related

quasi-geostrophi models (the Miller-Robert-Sommeria theory).

Real geophysial and experimental �ows are however dissipative and maintained

by external fores. These letures fous on reent theoretial development of the

statistial mehanis of those non-equilibrium situations. Those progresses have

been ahieved using tools from �eld theory (path integrals and instantons), non-

equilibrium statistial mehanis (large deviations, stohasti averaging). The aim

of these letures is to brie�y introdue the theoretial aspets of this program in

the simplest ontext: the 2D stohasti Euler or Navier-Stokes equations and the

quasi-geostrophi equations.

We review path integral representations of stohasti proesses, large deviations

for transition probabilities, ation minimization, instanton theory, for general me-

hanial systems fored by random fores. We will apply this framework in order

to predit equilibrium and non-equilibrium phase transitions for the 2D Euler,

Navier-Stokes, and quasi-geostrophi dynamis, and to predit the rates of rare

transitions between two attrators in situations of �rst order phase transitions.

Kineti theory of systems with long range interations, both with and without

stohasti external fores, are explained. Based on this kineti theory, we predit

non-equilibrium phase transitions, and disuss their reent experimental observa-

tions and numerial simulations.

Even if the model we have onsidered so far are too simple aademi models, the

Freddy Bouhet

Laboratoire de physique, Éole Normale Sup¯ieure de Lyon et CNRS, 46 allée d'Italie, 69007

Lyon, Frane

email: Freddy.Bouhet�ens-lyon.fr

3

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



4 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

expeted relevane of those approahes in the future for Earth atmosphere and

limate dynamis is brie�y disussed.

1 Introdution

1.1 Self-organization of two-dimensional and geophysial

�ows

Atmospheri and oeani �ows are three-dimensional (3D), but are strongly dom-

inated by the Coriolis fore mainly balaned by pressure gradients (geostrophi

balane). The turbulene that develops in suh �ows is alled geostrophi turbu-

lene. Models desribing geostrophi turbulene have the same type of additional

invariants as those of the two-dimensional (2D) Euler equations. As a onsequene,

energy �ows bakward and the main phenomenon is the formation of large sale

oherent strutures (jets, ylones and antiylones). One suh example is the

formation of Jupiter's Great Red Spot, Fig. 1.

Fig. 1: Piture of Jupiter's Great

Red Spot - a large sale vortex

situated between bands of atmo-

spheri jets. Photo ourtesy of NASA:

http://photojournal.jpl.nasa.gov/atalog

/PIA00014.

Fig. 2: Zonally averaged veloity pro�le in the

upper troposphere of Jupiter. The �ow is organ-

ised into alternating strong jets.

The analogy between 2D turbulene and geophysial turbulene is further em-

phasized by the theoretial similarity between the 2D Euler equations, desribing

2D �ows, and the layered quasi-geostrophi or shallow water models, desribing

the largest sales of geostrophi turbulene: both are transport equations for a

salar quantity by a non-divergent �ow, onserving an in�nite number of invari-

ants.
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1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 5

The formation of large sale oherent strutures is a fasinating problem and

an essential part of the dynamis of Earth's atmosphere and oeans. This is the

main motivation for setting up a theory for the self-organization of 2D turbulene.

1.2 Statistial mehanis of the self-organization of

two-dimensional and geophysial �ows: Onsager's

equilibrium route

Any turbulene problem involves a huge number of degrees of freedom oupled

via omplex nonlinear interations. The aim of any theory of turbulene is to

understand the statistial properties of the veloity �eld. It is thus extremely

tempting to attak these problems from a statistial mehanis point of view.

Statistial mehanis is indeed a very powerful set of theoretial tools that

allows us to redue the omplexity of a system down to a few thermodynami

parameters. As an example, the onept of phase transition allows us to desribe

drasti hanges of the whole system when a few external parameters are hanged.

Statistial mehanis is the main theoretial approah we develop in these letures.

It sueeds in explaining many of the phenomena assoiated with two-dimensional

turbulene [13℄.

This may seem surprising at �rst, as it is a ommon belief that statistial me-

hanis is not suessful in handling turbulene problems. The reason for this

belief is that most turbulene problems are intrinsially far from equilibrium. For

instane, the forward energy asade in three-dimensional turbulene involves a

�nite energy dissipation, no matter how small the visosity (anomalous dissipa-

tion) (see for instane Onsager's insightful onsideration of the non-onservation

of energy by the three dimensional Euler equations [28℄). As a result of this �nite

energy �ux, three dimensional turbulent �ows annot be onsidered lose to some

equilibrium distribution.

By ontrast, two-dimensional turbulene does not su�er from the anomalous

dissipation of the energy, so equilibrium statistial mehanis, or lose to equi-

librium statistial mehanis makes sense when small �uxes are present. The

�rst attempt to use equilibrium statistial mehanis ideas to explain the self-

organization of two-dimensional turbulene dates from Onsager work in 1949 [51℄

(see [28℄ for a review of Onsager's ontributions to turbulene theory). Onsager

worked with the point-vortex model, a model that desribes the dynamis of sin-

gular point vorties, �rst used by Lord Kelvin and whih orresponds to a speial

lass of solutions of the 2D Euler equations. The equilibrium statistial mehanis

of the point-vortex model has a long and very interesting history, with wonderful

piees of mathematial ahievements [1; 18; 21; 26; 27; 37; 39; 51℄.

The generalization of Onsager's ideas to the 2D Euler equations with a ontin-

uous vortiity �eld, taking into aount all invariants, has been proposed in the

beginning of the 1990s [45; 57; 58; 60℄, leading to the Miller�Robert�Sommeria

theory (MRS theory). The MRS theory inludes the previous Onsager theory
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6 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

and determines within whih limits the theory will give relevant preditions and

results.

The MRS theory deals with the miroanonial invariant measure. It predits

that most mirosopi states (vortiity �eld) onentrate into a single marostate

(most vortiity �elds basially have the same large sale veloity �eld). This

explains why one should expet the �ow to self-organize into this equilibrium

marostate. This equilibrium marostate is haraterized by the maximization of

an entropy with some onstraints related to dynamis invariants. The aim of se-

tion 3 is to sketh the derivation of this variational problem, whih is the basis

of the theory. Then appliation to the Great Red Spot of Jupiter will be brie�y

summarized.

These two points onstitute a very brief overview of equilibrium statistial me-

hanis. Over the last �fteen years, the RSM equilibrium theory has been applied

suessfully to a large lass of problems, for both the two-dimensional Euler and

quasi-geostrophi equations. This inludes many interesting appliations, suh as

the preditions of phase transitions in di�erent ontexts, a model for the Great

Red Spot and other Jovian vorties, and models of oean vorties and jets. A

detailed desription of the statistial mehanis of 2D and geophysial �ows (the-

ory) and of these geophysial appliations is presented in the review [13℄. Older

reviews or books [40; 42; 64℄, give a very interesting omplementary viewpoint,

stressing mainly the theory and laboratory experiments. The note by Y. Pomeau

[54℄ gives also a very interesting omment on the reason why the two-dimensional

Euler equations, by ontrast with most other equilibrium approah for lassial

�eld theory, does not su�er from the Rayleigh-Jeans paradox (basially the fat

that a lassial �eld has an in�nite heat apaity). This point is further disussed

in [13℄. Finally we stress that equilibrium statistial mehanis for two dimen-

sional and geophysial �ows is still a very ative subjet, with many ontribution

during the last few years [8; 24; 33�35; 48; 49; 55; 66; 70; 71; 73℄, many of them

by bright young sientists.

As far as equilibrium statistial mehanis is onerned, the aim of these leture

is just to explain the basis of Miller�Robert�Sommeria theory, explain how to

ompute the entropy of marostate and thus their probability through the use of

large deviation theory. We disuss these points in setion 3 at a level whih is as

elementary as possible.

1.3 Non-equilibrium statistial mehanis of the

self-organization of two-dimensional and geophysial

�ows: statistial mehanis and dynamis

Most of natural turbulent �ows are not freely evolving, they are rather on-

stantly fored and dissipated. Then, in statistially stationary regimes, power

input through external fores balane energy dissipation on average. In the limit

of very small fores and dissipation, ompared to onservative terms of the dy-
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1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 7

namis, it is expeted to �nd a strong relation between these non-equilibrium

�ows and some of the states predited by equilibrium statistial mehanis. In

order to give a preise meaning to this general idea, and to deal with far from

equilibrium situations, it is essential to develop also the non-equilibrium statisti-

al mehanis of the 2D Euler, 2D Navier-Stokes and barotropi quasi-geostrophi

equations. As we disuss below, this has been the subjet of reent key advanes

in the appliations of statistial mehanis to turbulent �ows. This is atually the

main subjet of these letures.

We present two non-equilibrium statistial mehanis approahes: the �rst deals

with non-equilibrium �rst order phase transitions and the omputation of transi-

tion rates using large deviations, and the seond is a kineti theory approah to

the predition of the large sale �ows.

1.3.1 Statistial mehanis of paths in phase spae and

non-equilibrium bistable turbulent �ows

Many turbulent �ows an evolve and self-organize towards two or more very di�er-

ent states. In some of these systems, the transitions between two of suh states are

rare and our relatively rapidly. Examples inlude the Earth magneti �eld rever-

sals (over geologial timesales) or in magneti �eld reversal in MHD experiments

(e.g. the Von Kármán Sodium (VKS) turbulent dynamo in Fig. 3) [3℄, Rayleigh-

Bénard onvetion ells [17; 20; 50; 65℄, 2D turbulene [10; 41; 63℄ (see Fig. 4),

3D �ows [56℄ and for oean and atmospheri �ows [62; 72℄. The understanding

of these transitions is an extremely di�ult problem due to the large number of

degrees of freedoms, large separation of timesales and the non-equilibrium nature

of these �ows.

However, for fored-dissipated turbulent systems it is unlear how to de�ne

the set of attrators for the dynamis. Although, in the limit of weak foring

and dissipation, one would expet that the set of attrators would onverge to

the ones of the deterministi equation. In the ase of the 2D Euler equations,

equilibrium statistial mehanis in the form of the equilibrium Miller-Robert�

Sommeria theory allows for the predition set of attrators for the dynamis.

They are a subsets of the steady states of the 2D Euler equations, then equilibrium

statistial mehanis gives a �rst partial answer to the question of attrators.

Moreover, simulations of the 2D Navier-Stokes equations in the weak fore

and dissipation limit showed that the dynamis atually onentrates preisely

lose to the set of the 2D Euler equations attrators [10℄. Interestingly, the same

simulation showed sporadi non-equilibrium phase transitions, where the system

spontaneously swithed between two apparently stable steady states resulting in

a omplete hange in the marosopi behavior (see �gure 4). If the fores and

dissipation are weak, then these transitions are atually extremely rare, ourring

on a timesale muh longer than the dynamial timesale.

In suh situations, when the turbulent �ow swithes at random times from one

type of attrator to another, a theoretial aim is to ompute the transition rate.

It is also often the ase that most transition paths from one attrator to another

onentrate to a single path, then a natural aim is to ompute this most probable
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8 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

Fig. 3: Figure taken from [3℄ showing random transitions between meta-stable orientations of

the magneti �eld in an experimental turbulent dynamo. The main azimuthal omponent of the

magneti �eld is shown in red.

Fig. 4: Figure taken from [10℄ showing rare transitions (illustrated by the Fourier omponent

of the largest y mode) between two large sale attrators of the periodi 2D Navier-Stokes

equations. The system spends the majority of its time lose to the vortex dipole and parallel

�ows on�gurations.

path. In order ahieve those aims, we will use a path integral representation of

the transition probabilities and study its semi-lassial limit, in an asymptoti

expansion where the small parameter is the one that determines both the fore

and dissipation amplitude. In this limit, if this semi-lassial approah is relevant,

one expets a large deviation result, similar to the one obtained through the

Freidlin-Wentzell theory[30℄. In order to illustrate in a pedagogial way the general

approah, we will treat in these letures the lassial ase of the Kramer model

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 9

(omputation of the transition rate for a partile in a double well potential). We

will generalize the disussion to a set of Langevin dynamis that inludes the

two-dimensional Euler and Quasi-Geostrophi Langevin dynamis, and �nally we

will disuss partial results for the two-dimensional Navier-Stokes equations when

detailed balane is not satis�ed. Those di�erent points are disussed in setion

4.4.

1.3.2 Kineti theory of zonal jets

One example of spontaneous emergene of large-sale oherent strutures in geo-

physial �ows is the formation of zonal (east-west) jets. The ommon pitures

of Jupiter perfetly illustrate this fat: the surfae �ow is learly organized into

parallel, alternating zonal jets as shown in �gure 2, with also the presene of giant

and very stable vorties suh as the Great Red Spot. Suh large sale features are

on one hand slowly dissipated, mainly due to a large-sale frition mehanism, and

on the other hand maintained by the small-sale turbulene, through Reynolds'

stresses. The main mehanism is thus a transfer of energy from the foring sale

(due to barotropi and barolini instabilities) to the turbulent sales and until

the sale of the jets.

An important point in this phenomenology is the fat that the turbulent �u-

tuations are of very weak amplitude ompared to the amplitude of the zonal jet,

and that they evolve muh faster. This means that the typial time sale of ad-

vetion and shear of the �utuations by the jet is muh smaller that the typial

time sale of formation or dissipation of the whole jet. This time sale separation

is a very spei� property of the geophysial large-sale strutures.

In this turbulent ontext, the understanding of jet formation requires averag-

ing out the e�et of rapid turbulent degrees of freedom in order to desribe the

slow evolution of the jet struture. Suh a task, an example of losure, is usually

extremely hard to perform for turbulent �ows. Using the time-sale separation

mentioned earlier, we prove that it an be performed expliitly in this problem.

This approah, alled a kineti theory by analogy with similar approahes in the

statistial mehanis of systems with long range interations, is presented in se-

tion 5.

1.4 A ontemporary approah of statistial mehanis: large

deviation theory

Onsager was the �rst to onsider a statistial mehanis explanation of two-

dimensional turbulent �ows [51℄. At the time he was sienti�ally ative, Onsager

made a large number of deisive ontributions to statistial mehanis theory:

solutions of the 2D Ising model, reiproity relations, ontributions to the sta-

tistial mehanis of eletrolytes and turbulene, and so on. Sine that time the

theoretial approahes for treating statistial mehanis problems have been om-
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10 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

pletely renewed. One of the main hanges has been the use of the language of

large deviation theory for more than 30 years. For instane, reent results in the

understanding of equilibrium statistial mehanis problems, proving �utuation

theorems (Onsager's reiproity relations generalized far from equilibrium), and

in dealing with non-equilibrium statistial mehanis problems, are all related to

large deviation theory.

Interestingly, as we disuss in these letures, the route proposed by Onsager in

his 1949 paper [51℄ in order to understand the self-organization of two-dimensional

�ows, led a few deades later to some of the �rst appliations of large deviation

theory to equilibrium statistial mehanis problems.

The theory of large deviations deals with the asymptoti behavior of the expo-

nential deay of the probabilities of rare or extreme events. The assoiated limiting

parameter is usually taken to be the number of observations, the number of par-

tiles, but an be other parameters, suh as vanishing noise or the temperature

of a hemial reation, or large time. Large deviation theory an be onsidered

a generalization of the entral limit theorem, with the re�nement of inluding

information about the behavior of the tails of the probability density. The main

result of large deviation theory is the large deviation priniple, a result desribing

the leading asymptoti behavior of the tails or large deviations of the probability

distribution in the limit N → ∞. For instane, the large deviation priniple for a

random variable XN is

lim
N→∞

− 1

N
log[P (XN = x)] = I(x), (1)

where P is the probability density for the random variable XN , and I(x) is alled

the rate funtion. For instane, if XN = (1/N)
∑N
i=1 xi, where xi are independent

identially distributed random variables then I(x) is given by Cramer's theorem.

Beside the appliations desribed in the previous setions, the aim of these

letures is to explain and derive heuristially large deviation results for the equi-

librium statistial mehanis of the two-dimensional Euler and quasi-geostrophi

equations (equilibrium) and for the 2D Navier-Stokes or quasi-geostrophi equa-

tions with stohasti fores (non-equilibrium). The large deviation result for the

equilibrium ase (setion 3) is derived through a generalization of Sanov theorem,

and leads to a formula for the probability of marostates for the miroanoni-

al measures. The large deviation results for the non-equilibrium ases (setion

4.4) are derived through semi-lassial limits in path integrals (or equivalently

the Freidlin-Wentzell framework) and lead to the evaluation of transition paths

and transition probabilities for bistable turbulent �ows, lose to non-equilibrium

phase transitions.

1.5 Organization of those letures

In setion 2, we state the equations of motion and their onservation laws. In se-

tion 3, we onstrut miroanonial invariant measures for the 2D Euler equations

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 11

and disuss the entropy maximization problem in prediting the most probably

steady states on the 2D Euler equation. In setion 4.4, we disuss large devia-

tions for non-equilibrium problems and illustrate this using a simple aademi

example, the problem of omputation of transition rate for the Kramer problem,

followed by the appliation to the 2D Navier-Stokes equations. Finally, in setion

5 we disuss the kineti theory of zonal jets for the barotropi quasi-geostrophi

dynamis.

2 The 2D Euler, barotropi Quasi Geostrophi, and

stohasti Navier�Stokes equations

2.1 Equations of motion

The aim of this setion is to present the simplest model that desribes two-

dimensional and geophysial turbulent �ows: the two-dimensional Navier-Stokes

equation and the barotropi equation with stohasti foring. In the limit when

fores and dissipation go to zero, the two-dimensional Navier-Stokes equation re-

dues to the two-dimensional Euler equation. We desribe the onservation laws

for these equations and their in�uene on the dynamis. The review [13℄ gives a

very brief introdution to geophysial �uid dynamis and the quasi-geostrophi

model. A more omplete introdution is found in textbooks of geophysial �uid

dynamis [53; 68℄.

We are interested in the non-equilibrium dynamis assoiated to the two-

dimensional stohastially fored barotropi equations (also alled barotropi

Quasi-Geostrophi equations):

∂q

∂t
+ v [q − h] ·∇q = −αω + ν∆ω +

√
2αη, (2)

v = ez ×∇ψ, q = ω + h(y) = ∆ψ + h, (3)

where ω, v and ψ are respetively the vortiity, the non-divergent veloity, and

the streamfuntion. For simpliity, in these letures we onsider the dynamis on

a periodi domain D = [0, 2δπ) × [0, 2π) with aspet ratio δ. Then ψ is periodi

with the further ondition

∫
D dr ψ = 0. q is the potential vortiity, and h is a

given topography funtion with

∫
D dr h = 0. For h = 0, the barotropi equations

redues to the 2D Navier-Stokes equation.

The linear frition term −αω models large sale dissipation. We onsider non-

dimensional equations, where a typial energy is of order 1 (see [13℄) suh that ν
is the inverse of the Reynolds number and α is the inverse of a Reynolds number

based on the large sale frition. We assume that the Reynolds numbers satisfy

ν ≪ α ≪ 1. In the limit of weak fores and dissipation limα→0 limν→0, the 2D

Navier-Stokes equations onverge to the two-dimensional Euler equations for �nite

time, but the type of foring and dissipation determines to whih set of attrators
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12 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

the dynamis evolve to over a very long time. The url of the foring η(x, t) is

a white in time Gaussian �eld de�ned by 〈η(x, t)η(x′, t′)〉 = C(x − x′)δ(t − t′),
where C is the orrelation funtion of a stohastially homogeneous noise.

The two-dimensional Euler equations (h = 0), or the inertial barotropi equa-
tion (h 6= 0), are given by Eq. (2) with fores and dissipation set to zero

(α = ν = 0).

2.2 Conservation laws for the inertial dynamis

The kineti energy of the �ow is given by

E [q] = 1

2

∫

D
dr v2 =

1

2

∫

D
dr (∇ψ)2 = −1

2

∫

D
dr (q − h)ψ, (4)

where the last equality is obtained with an integration by parts. The kineti energy

is onserved for the dynamis of the two-dimensional Euler and inertial barotropi

equations i.e. dE/dt = 0,. These equations also onserve an in�nite number of

funtionals, named Casimirs. They are related to the degenerate struture of

the in�nite-dimensional Hamiltonian system and an be understood as invariants

arising from Noether's theorem [61℄. These funtionals are of the form

Cs[q] =
∫

D
s(q)dr, (5)

where s is any su�iently regular funtion. We note that on a doubly-periodi

domain the total irulation

Γ =

∫

D
q dr, (6)

is neessarily equal to zero: Γ = 0.
The in�nite number of onserved quantities are responsible for the equations

having an in�nite (ontinuous) set of steady states (see setion 2 in [13℄). Any

of the in�nite number of steady states of the 2D Euler or inertial barotropi

equations satisfy

v ·∇q = 0.

For instane, if there is a funtional relation between the potential vortiity and

the streamfuntion, i.e. q = ∆ψ = f(ψ), where f is any ontinuous funtion, then

using 2 one easily hek that v ·∇q = 0. Physially, these states are important

beause some of them at as attrators for the dynamis.

There is also a strong empirial and numerial evidene that a omplex evolu-

tion of the two-dimensional Euler equations leads most of the times to attrators

that are steady states of the equations. The spei� funtion f that is reahed

after a omplex evolution an be predited in ertain situation using equilibrium

statistial mehanial arguments presented in the next setion (see [13℄ for more

details).
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1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 13

2.3 The onservation of the vortiity distribution

The two-dimensional Euler and inertial barotropi equations onserve the dis-

tribution of potential vortiity, i.e. the total area of a spei� potential vortiity

level set is onserved. As we explain now the onservation of the potential vortiity

distribution is equivalent to the onservation of all Casimirs.

We �rst prove that the potential vortiity distribution is onserved as a on-

sequene of Casimir onservation laws. We onsider the speial lass of Casimir

(5):

C(σ) =

∫

D
H(−q + σ)dr, (7)

where H( · ) is the Heaviside step funtion. The funtion C(σ) returns the area

oupied by all potential vortiity levels smaller or equal to σ. C(σ) is an invariant
for any σ and therefore any derivative of C(σ) is also onserved. Therefore, the

distribution of vortiity, de�ned as D(σ) = C′(σ), where the prime denotes a

derivation with respet to σ, is also onserved by the dynamis. The expression

D(σ)dσ is the area oupied by the vortiity levels in the range σ ≤ q ≤ σ + dσ.
Moreover, any Casimir an be written in the form

Cf [q] =
∫

D
dσ f(σ)D(σ).

The onservation of all Casimirs, Eq. (5), is therefore equivalent to the onserva-

tion of D(σ).
The onservation of the distribution of vortiity levels, as proven above, an also

be understood from the equations of motion. We �nd that Dq/Dt = 0, showing
that the values of the potential vortiity �eld are Lagrangian traers. This means

that the values of q are transported through the non-divergent veloity �eld, thus

keeping the distribution unhanged.

From now on, we restrit ourselves to a K-level vortiity distribution. We

make this hoie for pedagogial reasons, but a generalization of the disussion of

next setion to a ontinuous vortiity distribution is straightforward. The K-level

vortiity distribution is de�ned as

D(σ) =

K∑

k=1

Akδ(σ − σk), (8)

where Ak denotes the area oupied by the vortiity value σk. The areas Ak are

not arbitrary, their sum is the total area

∑K
k=1 Ak = |D|. Moreover, the onstraint

(6), imposes the onstraint

∑K
k=1Akσk = 0.
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14 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

3 Equilibrium statistial mehanis and the mean �eld

variational problem as a large deviation result

3.1 Large deviation theory in 2D turbulene, the

equilibrium mean �eld variational problem

The �rst large deviation results in two-dimensional turbulene have been obtained

in the ontext of the theory for the 2D Euler equations. Mihel and Robert [44℄

have studied the large deviation of Young measures and have suggested that the

entropy of the Miller�Robert�Sommeria theory is the analogue of a large deviation

rate funtion. By onsidering a prior distribution for the vortiity invariants, in a

framework where the invariants are onsidered in a anonial ensemble rather than

in a miroanonial one, Bouher and ollaborators [5℄ have given a derivation of a

large deviation result based on �nite dimensional approximations of the vortiity

�eld. The beginning of the nineties has also been a time of intense study of the

statistial mehanis of the point vortex model [4; 18; 27; 28; 38; 39℄, a speial

lass of solution of the two-dimensional Euler equations. Among those study, large

deviations results for the equilibrium measures where also obtained.

The aim of this setion is to present a heuristi onstrution of miroanonial

invariant measures for the 2D Euler equations. This onstrution primarily follows

the initial ideas of the previous works [5; 44℄, but is muh simpli�ed. Moreover, for

pedagogial reasons, the reading of this heuristi presentation does not imply any

knowledge of large deviation theory and avoids any tehnial disussion. These

measures are onstruted using �nite dimensional approximation of the vorti-

ity �eld, with N2
number of degrees of freedom. N2

is then the large deviation

parameter and the entropy appears as the analogue of the large deviation rate

funtion.

In order to state the main result, let us de�ne p(r, σ) as the loal probability

to observe vortiity values equal to σ at point r: p(r, σ) = 〈δ(ω(r) − σ)〉, where
δ is the Dira delta funtion (we onsider averaging 〈 · 〉 over the miroanonial

measure, see setion 3.2). We also de�ne ω(r) =
∫
dσ σp(r, σ) the loal vortiity

average. Then the large deviation rate funtion for p(r, σ) is S(E0) − S[p,E0]
where

S[p,E0] = S[p] ≡
∫

D

∑

k

pk log pk dr (9)

if the onstraints N [p] = 1, ∀k, A [pk] = Ak and E [ω] = E0 are satis�ed, and

S[p,E0] = −∞ otherwise, and where

S(E0) = sup
{p | N [p]=1}

{S[p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (10)

with E0, Ak and N , the energy, the vortiity distribution, and the probability

normalization de�ned in setion 3.3 respetively.

The interpretation of this result is that the most probable value for the lo-

al probability is the maximizer of the variational problem (10), and that the

probability to observe a departure from this most probable state is exponentially
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1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 15

large, with parameter N2
and rate funtion (9). Furthermore, the lassial mean

�eld equation for the streamfuntion ψ an be derived from (9), as disussed in

referene [6℄.

In next setions, we de�ne preisely the miroanonial measure for the 2D Eu-

ler equations (setion 3.2) and prove that the entropy S[p,E0] is a large deviation
rate funtion for p (setion 3.3). This justi�es the mean �eld variational problem

(10).

3.2 Miroanonial measure

In order to properly onstrut a miroanonial measure, we disretize the vor-

tiity �eld on a uniform grid with N2
grid points, de�ne a measure on the orre-

sponding �nite-dimensional spae and take the limit N → ∞. A uniform grid has

to be hosen in order to omply with a formal Liouville theorem for the 2D Euler

equations [14; 59℄.

We denote the lattie points by rij =
(
i
N ,

j
N

)
, with 0 ≤ i, j ≤ N−1 and denote

ωij ≡ ω(rij) the vortiity value at point rij . The total number of points is N
2
.

As disussed in the previous setion, we assume D(σ) =
∑K
k=1 Akδ(σ − σk).

For this �nite-N approximation, our set of mirostates (on�guration spae) is

then

XN =
{
ωN = (ωij)0≤i,j≤N−1 | ∀i, j ωij ∈ {σ1, . . . , σK}

and ∀k # {ωij | ωij = σk} = N2Ak
}
.

Here, #(A) is the ardinal of set A. We note that XN depends on D(σ) through
Ak and σk (see (8)).

Using the above expression we de�ne the energy shell ΓN (E0, ∆E) as

ΓN (E0, ∆E) =
{
ωN ∈ XN | E0 ≤ EN

[
ωN
]
≤ E0 +∆E

}
,

where

EN =
1

2N2

N−1∑

i,j=0

v2
ij = − 1

2N2

N−1∑

i,j=0

ωijψij ,

is the �nite-N approximation of the system energy, with vij = v(rij) and ψij =
ψ(rij) being the disretized veloity �eld and streamfuntion �eld, respetively.

∆E is the width of the energy shell. Suh a �nite width is neessary for our disrete

approximation, as the ardinal of XN is �nite. Then the set of aessible energies

on XN is also �nite. Let ∆NE be the typial di�erene between two suessive

ahievable energies. We then assume that ∆NE ≪ ∆E ≪ E0. The limit measure

de�ned below is expeted to be independent of ∆E in the limit N → ∞.

The fundamental assumption of statistial mehanis states that eah mi-

rostate in the on�guration spae is equiprobable. By virtue of this assumption,

the probability to observe any mirostate is Ω−1
N (E0, ∆E), where ΩN (E0, ∆E) is

the number of aessible mirostates, i.e. the ardinal of the set ΓN (E0, ∆E). The
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16 Freddy Bouhet, Cesare Nardini, and Tomás Tangarife

�nite-N spei� Boltzmann entropy is de�ned as

SN (E0, ∆E) =
1

N2
log ΩN (E0, ∆E). (11)

The miroanonial measure is then de�ned through the expetation values of

any observable A. For any observable A[ω] (for instane a smooth funtional of

the vortiity �eld), we de�ne its �nite-dimensional approximation by AN
[
ωN
]
.

The expetation value of AN for the miroanonial measure reads

〈
µN (E0, ∆E), AN

[
ωN
]〉
N

≡
〈
AN

[
ωN
]〉
N
≡ 1

ΩN (E0, ∆E)

∑

ωN∈ΓN (E0,∆E)

AN
[
ωN
]
.

The miroanonial measure µ for the 2D Euler equation is de�ned as a limit of

the �nite-N measure:

〈µ(E0), A[ω]〉 ≡ lim
N→∞

〈
µN (E0, ∆E), AN

[
ωN
]〉
N
.

The spei� Boltzmann entropy is then de�ned as

S(E0) = lim
N→∞

SN (E0, ∆E). (12)

3.3 The mean �eld variational problem as a large deviation

result

Computing the Boltzmann entropy by diret evaluation of Eq. (12) is usually an

intratable problem. However, we shall proeed in a di�erent way and show that

this alternative omputation yields the same entropy in the limit N → ∞. We

give heuristi arguments in order to prove that the omputation of the Boltzmann

entropy Eq. (12) is equivalent to the maximization of the onstrained variational

problem (10) (alled a mean �eld variational problem). This variational problem

is the foundation of the RSM approah to the equilibrium statistial mehanis for

the 2D Euler equations. The essential message is that the entropy omputed from

the mean �eld variational problem (10) and from Boltzmann's entropy de�nition

(12) are the equal in the limit N → ∞. The ability to ompute the Boltzmann

entropy through this type of variational problems is one of the ornerstones of

statistial mehanis.

Our heuristi derivation is based on the same type of ombinatoris arguments

as the ones used by Boltzmann for the interpretation of its H funtion in the

theory of relaxation to equilibrium of a dilute gas. This derivation doesn't use the

tehnialities of large deviation theory. The aim is to atually obtain the large

deviation interpretation of the entropy and to provide a heuristi understanding

using basi mathematis only. The modern mathematial proof of the relationship

between the Boltzmann entropy and the mean �eld variational problem involves

Sanov theorem.
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Marostates are set of mirosopi on�gurations sharing similar marosopi

behaviors. Our aim is to properly identify marostates that fully desribe the

main features of the largest sales of 2D turbulent �ow, and then to ompute

their probability or entropy.

Let us �rst de�ne marostates through loal oarse-graining. We divide the

N ×N lattie into (N/n)× (N/n) non-overlapping boxes eah ontaining n2
grid

points (n is an even number, and N is a multiple of n). These boxes are entered
on sites (i, j) = (In, Jn), where integers I and J verify 0 ≤ I, J ≤ N/n− 1. The
indies (I, J) label the boxes.

For any mirostate ωN ∈ ΓN , let f
k
IJ be the frequeny to �nd the value σk in

the box (I, J)

F kIJ (ω
N ) =

1

n2

I+n/2∑

i=I−n/2+1

J+n/2∑

j=J−n/2+1

δ
d

(ωij − σk),

where δ
d

(x) is equal to one whenever x = 0, and zero otherwise. We note that for

all (I, J),
∑K

k=1 F
k
IJ(ω

N ) = 1.
A marostate pN =

{
pkIJ
}
0≤I,J≤N/n−1;1≤k≤K , is the set of all mirostates of

ωN ∈ XN suh that F kIJ (ω
N ) = pkIJ for all I, J , and k (by abuse of notation, and

for simpliity, pN =
{
pkIJ
}
0≤I,J≤N/n−1;1≤k≤K refers to both the set of values and

to the set of mirostates having the orresponding frequenies). The entropy of

the marostate is de�ned as the logarithm of the number of mirostates in the

marostate

SN [pN ] =
1

N2
log
(
#
{
ωN ∈ XN

∣∣
for all I, J, and k, F kIJ (ω

N ) = pkIJ
})
. (13)

Following an argument by Boltzmann, it is a lassial exerise in statistial me-

hanis, using ombinatoris and the Stirling formula, to prove that in the limit

N ≫ n≫ 1 , without taking into aount of the area onstraints Ak, the entropy
of the marostate would onverge to

SN [pN ]
N≫n≫1∼ SN [pN ] = − n2

N2

N/n−1∑

I,J=0

K∑

k=1

pkIJ log pkIJ

if ∀I, J, N [pIJ ] = 1, and SN [pN ] ∼ −∞ otherwise, where N [pIJ ] ≡ ∑
k p

k
IJ .

The area onstraints are easily expressed as onstraints over pN : AN
[
pkN
]
≡

n2

N2

∑N/n−1
I,J=0 pkIJ = Ak and ∀I, J, N [pIJ ] = 1. An easy generalization of the above

formula gives

SN [pN ]
N≫n≫1∼ SN [pN ]

if ∀k, AN
[
pkN
]
= Ak, and SN [pN ] ∼ −∞ otherwise. In the theory of large devia-

tion, this result ould have been obtained using Sanov's theorem. We now onsider

a new marostate (pN , E0) whih is the set of mirostates ωN with energy EN
[
ωN
]

verifying E0 ≤ EN
[
ωN
]
≤ E0+∆E (the intersetion of ΓN (E0, ∆E) and pN ). For

a given marostate pN , not all mirostates have the same energy. The onstraint
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on the energy thus an not be reast as a simple onstraint on the marostate pN .
Then one has to treat the energy onstraint in a more subtle way. The energy is

EN
[
ωN
]
= − 1

2N2

N−1∑

i,j=0

ωNijψ
N
ij .

The streamfuntion ψNij is related to ωN through

ψij =
1

N2

N−1∑

i′,j′=0

Gij,i′j′ω
N
i′j′ ,

where Gij,i′j′ is the Laplaian Green funtion in the domain D. In the limit

N ≫ n≫ 1, the variations of Gij,i′j′ for (i
′, j′) running over the small box (I, J)

are vanishingly small. Then Gij,i′j′ an be well approximated by their average

value over the boxes GIJ,I′J′
. Then

ψij ≃ ψIJ ≡ 1

N2

N/n−1∑

I′,J′=0

GIJ,I′J′

I+n/2∑

i′=I−n/2+1

J+n/2∑

j′=J−n/2+1

ωNi′j′ =
n2

N2

N−1∑

I′,J′=0

GIJ,I′J′ωNIJ ,

where the oarse-grained vortiity is de�ned as

ωNIJ =
1

n2

I+n/2∑

i′=I−n/2+1

J+n/2∑

j′=J−n/2+1

ωNi′j′ .

We note that, over the marostate pN , the oarse-grained vortiity depends on

pN only:

ωNIJ =

K∑

k=1

pkIJσk for ωN ∈ pN .

Using similar arguments, it is easy to onlude that in the limit N ≫ n ≫ 1 the

energy of any mirostate of the marostate pN is well approximated by the energy

of the oarse-grained vortiity

EN
[
ωN
] N≫n≫1∼ EN

[
ωNIJ

]
= − n2

2N2

N/n−1∑

I,J=0

ωNIJψ
N
IJ .

Then the Boltzmann entropy of the marostate is

SN [pN , E0]
N≫n≫1∼ SN [pN ] (14)

if ∀k, N [pkN ] = 1, AN
[
pkN
]
= Ak and EN

[
ωNIJ

]
= E0, and SN [pN , E0] ∼ −∞

otherwise.

Consider PN,E0(pN ) to be the probability density to observe the marostate

pN in the �nite-N miroanonial ensemble with energy E0. By de�nition of the

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 19

miroanonial ensemble of the entropy SN (E0) (see Eq. (11) and the preeding

paragraph), we have

logPN,E0(pN )
N→∞∼ N2 [SN [pN , E0]− SN (E0)] . (15)

From the general de�nition of a large deviation result given by Eq. (1), we learly

see that formula (14) is a large deviation result for the marostate pN in the miro-

anonial ensemble. The large deviation parameter is N2
and the large deviation

rate funtion is −SN [pN , E0] + SN (E0).
We now onsider the ontinuous limit. The marostates pkN are now seen as

the �nite-N approximation of pk, the loal probability to observe ω(r) = σk:
pk(r) = 〈δ(ω(r)−σk)〉. The marostate is then haraterized by p = {p1, . . . , pK}.
Taking the limit N ≫ n ≫ 1 allows us to de�ne the entropy of the marostate

(p,E0) as

S[p,E0] = S[p] ≡
∑

k

∫

D
pklogpk dr (16)

if ∀k N [pk] = 1, A [pk] = Ak and E [ω] = E0, and S[p,E0] = −∞ otherwise. In

the same limit, it is learly seen from de�nition (13) and result (16) that there

is a onentration of mirostates lose to the most probable marostate. The

exponential onentration lose to this most probable state is a large deviation

result, where the entropy appears as the opposite of a large deviation rate funtion

(up to an irrelevant onstant).

The exponential onvergene towards this most probable state also justi�es the

approximation of the entropy with the entropy of the most probable marostate.

Thus, in the limit N → ∞ we an express the Boltzmann entropy, Eq. (12), as

S(E0) = sup
{p | N [p]=1}

{S[p] | E [ω̄] = E0, ∀k A[pk] = Ak} , (17)

where p = {p1, . . . , pK} and ∀ r, N [p](r) =
∑K

k=1 pk(r) = 1 is the loal nor-

malization. Furthermore, A[pk] is the area of the domain orresponding to the

vortiity value ω = σk. The fat that the Boltzmann entropy S(E0) Eq. (12) an
be omputed from the variational problem (17) is a powerful non-trivial result of

large deviation theory.

3.4 Appliations of equilibrium statistial mehanis

In the two previous setions, we have de�ned the miroanonial measure for

the two-dimensional Euler and quasi geostrophi equations, and we have proven

that the logarithm of the probability of a marostate p is given by the marostate

entropy (16). We an onlude that most of the mirostates will orrespond to the

most probable marostate, the one that atually maximize the variational problem

(17). This most probable marostate is alled the equilibrium marostate. This

means that if we take a random mirostate, it will nearly surely have the same
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Observation (Voyager)

Statistial Equilibrium

Fig. 5: Left: the observed veloity �eld is from Voyager spaeraft data, from Dowling and

Ingersoll [25℄ ; the length of eah line is proportional to the veloity at that point. Note the

strong jet struture of width of order R, the Rossby deformation radius. Right: the veloity

�eld for the statistial equilibrium model of the Great Red Spot. The atual values of the jet

maximum veloity, jet width, vortex width and length �t with the observed ones. The jet is

interpreted as the interfae between two phases; eah of them orresponds to a di�erent mixing

level of the potential vortiity. The jet shape obeys a minimal length variational problem (an

isoperimetrial problem) balaned by the e�et of the deep layer shear.

veloity as the one of the equilibrium marostate. As a onsequene, we onlude

that equilibrium marostates are natural andidates to model self organized large

sale turbulent �ows, like for instane the Great Red Spot of Jupiter shown on

�gure (1).

A number of works have onsidered the omparison of self-organized turbu-

lent �ows with equilibrium marostates. Interested readers will �nd ompari-

son with experiments and numerial simulations desribed in the review [64℄,

whereas models of geophysial �ows, for instane the Great Red Spot of Jupiter,

oean mesosale vorties, strong mid basin jets similar to the Gulf Stream or

the Kuroshio are disussed in the review [16℄. Reent appliations to model the

vertial struture of oeans an be found in the papers [70; 71℄.

As an example, �gure 5 shows the omparison of the observed veloity �eld

for the Great Red Spot of Jupiter with the veloity �eld of an equilibrium

marostate of the quasi-geostrophi model. The theoretial analysis of this equi-

librium marostate [11℄ is based on an analogy with Van Der Walls�Cahn�Hilliard

model of �rst order transition and the shape of the strong jet obeys a minimal

length variational problem (an isoperimetrial problem) balaned by the e�et of

the deep layer shear (see [16℄ for more details).

Another example of equilibrium predition is the phase diagram of statistial

equilibria for the two-dimensional Euler equation on a doubly periodi domain

(torus). This phase diagram (�gure 6) shows that the statistial equilibria are

either dipoles (one ylone and one antiylone) or parallel �ows. This example

is further disussed in the work [10℄ and the review [16℄. This equilibrium phase

diagram has also been used in order to predit non-equilibrium phase transitions

[10℄ as is disussed in setion 4.4.

##7#52#aSUZPUk1BVC1WaXJ0dWFsbw==



1 Stohasti Navier�Stokes Equation and Geostrophi Turbulene 21

❛✹

❣

✲❣✯

✯❣

✵ ✶✵ ✷✵ ✸✵ )✵ ✺✵
✵
✵✁✺
✶
✶✁✺
✷
✷✁✺
✸
✸✁✺

✂ ✄

☎ ✆ ✝ ✞ ✟ ✠ ✻☎
✆
✝
✞
✟
✠
✻

✡ ☛ ☞ ✌ ✍ ✎ ✏✡
☛
☞
✌
✍
✎
✏

❊

=✑✒✓

A✔✒✓

       
       
       
       
       
       
       

!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!
!!!!!!!

❉✕✖✗✘✙

❯✚✕✛✕✜✙✢✣✕✗✚✤✘ ✥✘✗✦

■✧ ■■✧

★ ★✩★✪ ★✩✫ ★✩✫✪ ★✩✬ ★✩✬✪★
✫
✬
✭
✮
✪
✰
✼

✱

✳✴

Fig. 6: Bifuration diagrams for statistial equilibria of the two-dimensional Euler equations in

a doubly periodi domain a) in the g-a4 plane, g is related to the domain aspet ratio and a4 to

the fourth order moment of the vortiity distribution (please see [16℄). b) obtained numerially

in the E − a4 plane, E is the energy, in the ase of doubly periodi geometry with aspet ratio

δ = 1.1. The olored insets are streamfuntion and the inset urve illustrates good agreement

between numerial and theoretial results in the low energy limit.

4 Non equilibrium phase transitions, path integrals, and

instanton theory

The aim of this setion is to disuss non-equilibrium phase transitions in turbulent

�ows, more spei�ally for the dynamis of the two-dimensional Navier�Stokes

equations with random fores, quasi-geostrophi dynamis with random fores,

or related dynamis. We want to disuss simple examples for whih situations

with rare transitions between two attrators exist (bistability). We will use path

integrals and large deviations in order to ompute the most-probable paths for

those transitions and the transition rates.

In order to give a pedagogial presentation of path integrals and large devia-

tion theory for stohasti dynamis we �rst disuss the extremely lassial ase

of the Kramer problem: the over-damped dynamis of a partile in a double-

well potential, in setion 4.1. We generalize these results to an abstrat set of

dynamis, alled Langevin dynamis, in setion 4.2. We apply these results to

two-dimensional Euler and Quasi-Geostrophi Langevin dynamis in setion 4.3,

for whih we are able to predit bistability, ompute transition rates and the most

probable transition paths. Finally we disuss path integral approahes and ation

minimizer for the stohasti Navier-Stokes equations in a non-equilibrium ontext

in setion 4.4.
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4.1 Large deviations for the overdamped Langevin dynamis

We wish �rst to give a pedagogial desription of large deviation theory in non-

equilibrium systems , more spei�ally for dynamis onsisting of stohasti

di�erential equations. Therefore, we begin by applying large deviation theory to

a simple aademi example of an over-damped partile in a double-well potential

(the Kramer problem) where a large deviation result exists. We will show that

we an ompute the transition rate for the motion of the partile from one well

to the other and that the result is an Arrhenius fator (it is proportional to the

exponential of the energy barrier height between the two wells). In fat, this is a

large deviation result.

This setion develops lassial ideas. We use the path integral formalism for

stohasti proesses [52; 74℄. Similar results are disussed by mathematiians in

the framework of the Freidlin-Wentzell theory [30; 67℄. We are muh interested by

the time-reversal symmetries of the ation and its onsequene for the symmetry

between relaxation and �utuation paths, and its onsequenes for the ompu-

tation of the most probable transition (instanton). Those symmetries are disuss

muh less often than the other material, but there are also very lassial (some

people say it dates from Onsager, we do not know exatly).

4.1.1 The overdamped Langevin dynamis

We onsider a single overdamped partile in a 1D double-well potential V (x)
and subjeted to random fores due to a small oupling to a thermal bath. For

simpliity we onsidered the overdamped limit, for whih the dynamis of the

partile position x is governed by the stohasti di�erential equation

ẋ = −dV

dx
+

√
2

β
η, (18)

where η is a random white noise with a Gaussian distribution haraterized by

E [η(t)η(t′)] = δ(t−t′), V (x) is a double well potential (see Fig. 7), and β = 1/kBT
where T is the temperature. In the deterministi situation, when 1/β = 0, the
partile relaxes to one of the two stable steady states of the potential V , i.e. it
onverges either to x = −1 or to x = 1. In the presene of thermal noise, the

partile may gain enough energy to jump the potential barrier at x = 0 and

settle in the other potential well. If the foring is weak, i.e. 1 ≪ β∆V , then
the jumps between wells will be rare events and will be statistially independent

from one another. They will then be desribed by a Poisson proess haraterized

by a transition rate λ. We will show that one an apply the theory of large

deviations in order to ompute λ. Moreover the theory of large deviation will lead

to the onlusion that most of the transition paths onentrate lose to the most

probable transition path. As will be disussed more preisely below, this most

probable transition path in this situation is alled an instanton.

In order to obtain these results, we will use formal omputations based on a

path integral formulation of the transition probabilities for the stohasti proess
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(18). Suh a path integral formulation is referred as Onsager�Mahlup formal-

ism, as Onsager and Mahlup �rst proposed it, few years after the path integral

formulation of quantum mehanis by Feynman.

 0
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 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

V
(x

)

x

∆V

Fig. 7: Graph of the double well potential V (x) = (x2 − 1)2/4. We observe two stable steady

states at x = ±1 and a saddle at x = 0 with height ∆V = 1/4.

4.1.2 The transition probability as a path integral

To give a simple understanding of the Onsager-Mahlup formalism, we �rst on-

sider a vetor η = {ηi}1≤i≤N of independent Gaussian random variables, with

zero mean E(ηi) = 0 and ovariane E(ηiηj) = δij . By de�nition, the probability

measure of η is the Gaussian measure

dµ = exp

(
−1

2

N∑

i=1

η2i

)
N∏

i=1

dηi√
2π
. (19)

The Euler approximation of the Langevin equation (18) is, within the Ito onven-

tion,

xi = xi−1 −∆t
dV

dx
(xi−1) +

√
2∆t

β
ηi (20)

for 1 ≤ i ≤ N and with x0 = x(0) a given initial state. The probability measure

of a partiular path x = {xi}1≤i≤N is given by inverting (20) and inserting it in

(19),

dµ = exp

(
−β
4

N∑

i=1

(
xi − xi−1

∆t
+

dV

dx
(xi−1)

)2

∆t

)
J(η|x)

N∏

i=1

dxi√
2π
. (21)

In this expression, J(η|x) is the Jaobian of the hange of variable η → x. In the

Ito onvention (20), the orresponding matrix is lower-triangular with ones in the

diagonal, so that J(η|x) = 1.
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The measure of a Gaussian stohasti proess η(t) of zero mean E[η(t)] = 0
and ovariane E[η(t)η(t′)] = δ(t− t′), on a time interval [0, T ] with T = N∆t, is
the formal generalization of the above �nite dimensional measure (19),

dµ = exp

(
−1

2

∫ T

0

η2(t)dt

)
D[η]. (22)

The di�erential element D[η] in the above expression is the formal limit of the

�nite-dimensional quantity

∏N
i=1

dηi√
2π

for N → ∞, ∆t → 0, where ηi = η(i∆t) =

η(iT/N). People well trained in mathematis know the di�ulty to de�ne suh

an objet, but we will keep our disussion at a formal level and state that this

formal notation ontains all the mathematial subtleties related to the limit N →
∞, ∆t → 0. Then, the probability measure of a partiular trajetory {x(t)}0≤t≤T
is also the formal limit of (21),

dµ = exp

(
−β
4

∫ T

0

(
ẋ+

dV

dx

)2

dt

)
J [η|x]D[x], (23)

where J [η|x] is the Jaobian of the hange of variable η → x, and is also equal to

one (we refer to [74℄ for a more general treatment, noting that [74℄ atually use

the Stratonovih onvention).

The transition probability from an initial state x0 at time 0 to a �nal state xT
at time T is the sum over all possible paths {x(t)}0≤t≤T suh that x(0) = x0 and
x(T ) = xT of the probability of a single path (23). Suh a sum an be formally

written as the path integral

P (xT , T ;x0, 0) =

∫ x(T )=xT

x(0)=x0

exp

(
−β
2
A[x]

)
D[x], (24)

with the ation funtional

A[x] =
1

2

∫ T

0

(
ẋ+

dV

dx

)2

dt. (25)

From (24), it is lear that the most probable trajetories with presribed initial

and �nal states are minimizers of the ation with presribed initial and �nal point.

The optimal ation is denoted

A(x0, xT , T ) = min {A[x] | x(0) = x0, x(T ) = xT } .

4.1.3 Flutuation paths

When the initial point x0 = xa belongs to an attrator of the deterministi dy-

namis (for the Kramer problem, if x0 = xa = ±1 is a stable �xed points), it

is expeted that the ation A(xa, X, T ) dereases with time. The ation minima

starting from one attrator and having an in�nite duration will thus play an im-
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portant role. Moreover, those in�nite time ation minimizers are essential beause

the transition probability P (X,T ;xa, 0) onverges to the stationary distribution

of the stohasti proess when the time T goes to in�nity. Those ation minimizers

starting from one attrator and with an in�nite duration are alled �utuation

paths, they solve

A(xa, X,∞) = min
{
A[x] | lim

T→∞
x(−T ) = xa, x(0) = X

}
.

4.1.4 Relaxation paths

We onsider a state X that belongs to the basin of attration of an attrator

xa of the deterministi dynamis. The relaxation path starting at x, denoted
{xr(t)}0≤t≤T is de�ned by

ẋr = −dV

dx
(xr)

with initial onditions xr(0) = X . As the path onverges to xa, we have xr(+∞) =
xa. Using the expression of the ation (25), we see thatA[xr ] = 0, as the relaxation
path is a deterministi solution, and we also notie that A[x] ≥ 0 for any path

{x(t)}0≤t≤T . As a onsequene, relaxation paths are global minimizers of the

ation A[x]. This is beause following the deterministi dynamis xr in order to

reah the attrator xa starting fromX doesn't require any stohasti perturbation,

so that the ost is zero and the probability is maximal.

4.1.5 Time-reversal symmetry and the relation between �utuation

and relaxation paths

In order to haraterize �utuations paths and instantons, we will take pro�t of

the time-reversal symmetry of the over-damped Langevin dynamis. We onsider

a path {x(t)}0≤t≤T and the reversed path R[x] = {x(T − t)}0≤t≤T . The ation of

the reversed path reads

A[R[x]] =
1

2

∫ T

0

(
d

dt
R[x] +

dV

dx
(R[x])

)2

dt =
1

2

∫ T

0

(
−ẋ(t′) + dV

dx
(x(t′))

)2

dt′,

with the hange of variable t′ = T − t. Then, writing

(
ẋ− dV

dx

)2

=

(
ẋ+

dV

dx

)2

− 4ẋ
dV

dx
=

(
ẋ+

dV

dx

)2

− 4
d

dt
V (x),

we get

A[R[x]] = A[x] − 2 (V (x(T ))− V (x(0))) . (26)

Plugging this relation into the path integral expression of the transition probabil-

ity (24), we obtain
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P (R[xT ], T ;R[x0], 0) = P (xT , T ;x0, 0) exp

(
V (x(T ))− V (x(0))

kBT

)
.

We reognize the Gibbs stationary distribution of the over-damped Langevin equa-

tion PS(x) =
1
Z e

−V (x)/kBT
, so that the above expression gives the detailed balane

relation

P (xT , T ;x0, 0)PS(x0) = P (x0, T ;xT , 0)PS(xT ).

We have thus proven that detailed balane is a onsequene of the time-reversal

symmetry, as expeted on general ground.

We now onsider the �utuation path from one attrator xa to any point X of

its basin of attration. Using relation (26) and the fat that the ation is always

positive, we have

A[x] ≥ 2 (V (x(T ))− V (x(0))) , (27)

with equality if and only if x is a minimizer of the reversed ation A[R[x]]. If the
initial state is an attrator and the �nal state is another point in the assoiated

basin of attration, the reversed ation A[R[x]] is naturally minimized by the

relaxation path R[x] = xr that goes from X to the attrator,

d

dt
R[x] = −dV

dx
(R[x])

with R[x](0) = X and R[x](+∞) = xa. Then the minimizer of A[x] is the reversed
relaxation path. We thus onlude that the �utuation path from xa to X , is the

time reversed of the relaxation path from X to xa. This situation is shematially

represented in �gure 8.

4.1.6 Instanton and large deviation priniple

We de�ne the instanton as the most probable path that go from one attrator

x−1 = −1 to the other one x1 = 1 in an in�nite time. More preisely we onsider

xT the minimizer of variational problemmin
{
A[x] | x

(
−T

2

)
= x−1, x

(
T
2

)
= x1

}
,

and the instanton is the limit when T → ∞ of xT . The instanton ation is

A(x−1, x1) = lim
T→∞

min

{
A[x] | x

(
−T

2

)
= x−1 and x

(
T

2

)
= x1

}
,

As will soon beome lear, instantons are related to the most probable transition

paths, and their ation to the transition rate λ.
From the previous disussion, it is easily understood that instantons are deom-

posed into two parts. First, there is the �utuation path from x−1 to the saddle

xs = 0, whih is the reverse of the relaxation path from xs to x−1. The ation of

this part of the trajetory is given by (26), it is A[R[xr ]] = 2 (V (xs)− V (x−1)) =
2∆V , where ∆V is the potential barrier height. The seond part of the instan-

ton trajetory is the relaxation path from the saddle xs to the �nal attrator x1.
The ation of this relaxation path is zero, so that the total instanton ation is

A[x∗] = 2∆V .
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Fig. 8: Shemati representation of the

�utuation and relaxation paths between

an attrator of the deterministi dynam-

is x0 and another point X in the basin of

attration of x0, for the over-damped dy-

namis. The relaxation path is the deter-

ministi trajetory from x to x0, and the

�utuation path is the time-reversed traje-

tory. Both trajetories are the most prob-

able paths with the assoiated initial and

�nal states.

Relaxation

x
0

Fluctuation

x
1 x

p

Fig. 9: Flutuation and relaxation paths be-

tween an initial position x0 and an attrator x1,
for the full Langevin dynamis 30. The �utua-

tion path (reversed relaxation path) is obtained

by reversal of time, so the momentum is hanged

as p → −p. Both trajetories are the most prob-

able paths with the assoiated initial and �nal

onditions.

A more preise analysis shows that as both the �utuation path to the saddle

and the relaxation path last for an in�nite time (an in�nite time is needed to quit

the attrator and an in�nite time is needed to reah the saddle). This explains

the de�nition of the instanton through the limit of the �nite time minimizer xT .
One an also understand that any temporal translation of an instanton is another

minimizer from on attrator x−1 = −1 to the other one x1 = 1 in an in�nite

time. This degeneray is related to the notion of a �free-instanton-moleule� gas

approximation and has the onsequene that for time T ≫ 1, the transition

probability is proportional to time T :

P (x1, T ;x−1, 0)
T≫1∼ λT.

We refer to [19℄ for a detailed disussion.

In the limit of small foring 1 ≪ β∆V , the distribution given by the path

integral (24) is onentrated around its most probable state, the instanton we

have determined. We an thus apply a saddle-point approximation in order to get

the transition probability Pt,

lim
β→∞

− 1

β
log(Pt) = ∆V. (28)

Formula (28) states that the transition probability for observing the rare transition

between the two potential wells, in the limit of the weak noise limit, is proportional

to the exponential of the barrier height∆V . Suh a result is alled a large deviation
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priniple for the probability Pt. We reover the exponential fator of the Arrhenius

formula for the transition rate

λ =
1

τ
exp

(
− ∆V

kBT

)
(29)

where ∆V is the energy barrier height and kBT is the temperature.

The omputation of the prefator 1/τ goes beyond a large deviation result. It

was already omputed by Kramer, for an overdamped Kramer dynamis. It was

the subjet of Langer theory for systems with many degrees of freedom. Alterna-

tively, it an be omputing in the path integral framework by omputing the path

integrals at next order, omputing the properties of the Gaussian proesses lose

to the instanton, and treating orretly the subtleties related to the instanton de-

generay due to time translation. Suh a omputation an be found for example

in the referene [19℄. The result is

τ = 2π

(
d2V

dx2
(x0)

d2V

dx2
(x−1)

)−1/2

.

4.1.7 Generalization to the inertial Langevin dynamis

We onsider now the dynamis of a partile in the same double-well potential,

with random fores, but without the over-damped approximation. The position

and momentum of the partile {x, p} satisfy

{
ẋ = p

ṗ = −dV

dx
− αp+

√
2α
β η.

(30)

In this ase, the time-reverse of a given path {x(t), p(t)}0≤t≤T is given by I [x, p] =
{x(T − t),−p(T − t)}0≤t≤T , as represented in �gure 9. It is easily proven that the

ation of the reversed ation path satis�es a relation similar to 26. Then, as in the

overdamped ase, one easily proves that the �utuation paths is the time reverse

of the relaxation paths. As in the over-damped ase, instantons from one attrator

to the other are omposed of a �utuation path (time reversed relaxation path)

from the �rst attrator {x−1 = −1, p−1 = 0} to the saddle {0, 0}, and a relaxation

path from the saddle to the �nal attrator {1, 0}.

4.2 Langevin dynamis with potential G

The aim of this setion is to generalize the results disussed for the Kramer model

in setion 4.1 to a lass of dynamis that orresponds to systems oupled with

equilibrium (thermal) baths. The onsider dynamis with Liouville theorem (for

instane Hamiltonian dynamis), with dissipation whih are the gradient of a

onserved quantity and stohasti fores with Einstein type relations. For those
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Langevin dynamis, we prove detailed balane (sometimes in a generalized form),

we prove that the �utuation paths are the time reversed of the relaxation paths,

and we desribe the instantons.

Whereas suh Langevin dynamis are very ommon in physis, the disussion

below is original. As far as we know we are the �rst to desribe this general

framework, espeially for the ase when the potential is not the Hamiltonian but

another onserved quantity. The aim is to apply this framework to dynamis that

inlude the two-dimensional Euler and quasi-gestrophi dynamis.

4.2.1 De�nition of Langevin dynamis

In this setion we onsider the deterministi dynamis

∂q

∂t
= F [q] (31)

where q is either a �nite dimensional variable or a �eld.

If q ∈ RN
, the dynamis is

∂qi
∂t = Fi [q]. We then assume that this dynam-

ial system onserves the Liouville measure

∏N
i=1 dqi, or equivalently that the

divergene of the vetor �eld F is zero

∇.F ≡
N∑

i=1

∂Fi
∂qi

= 0.

We all this property a Liouville theorem.

If q is a �eld (for instane a two-dimensional vortiity or potential vor-

tiity �eld), de�ned over a domain D, F [q] (r) is a quantity omputed from

the �eld q at any point r. For instane for the Quasi-Geostrophi equation

F [q] = −v [q − h] ·∇q (r) . We ontinue the disussion for a �eld equation only.

For any funtional K, δK
δq(r) is the funtional derivative of K at point r, a general-

ization of the usual derivative, suh that for any variation δq, at linear order the
�rst variations of K are given by

δK =

∫

D

δK
δq(r)

δq (r) dr.

We assume that a Liouville theorem holds for the dynamis (31), in the sense

that the formal generalization of the �nite dimensional Liouville theorem

∇.F ≡
∫

D

δF
δq(r)

(r) dr = 0,

is veri�ed.

We also assume that this dynamial system has a onserved quantity G:
dG/dt = 0. From (31), we see that this is equivalent to
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∫

D
F [q] (r)

δG
δq(r)

[q] dr = 0, (32)

for any q. Those hypothesis are veri�ed, for instane if the dynamial system is

an Hamiltonian system

F(q) = {q,H} ,
where {., .} is a Poisson braket, and G one of the onserved quantity of the

Hamiltonian system, for instane G = H. We stress however that G does not need

to be H.

If the Liouville hypothesis is veri�ed and G is a onserved quantity, we all a

Langevin dynamis for the potential G the stohasti dynamis

∂q

∂t
= F [q] (r) − α

∫

D
C(r, r′)

δG
δq(r′)

[q] dr′ +
√
2αγη, (33)

where we have introdued a stohasti fore η, whih we assume to be a Gaussian

proess, white in time, and orrelated as E [η(r, t)η(r′, t′)] = C(r, r′)δ(t − t′). As
it is a orrelation funtion, C has to be a symmetri positive funtion: for any

funtion φ over D ∫

D

∫

D
φ (r)C(r, r′)φ (r′)drdr′ ≥ 0, (34)

and C(r, r′) = C(r′, r). For simpliity, we assume in the following that C is positive

de�nite and has an inverse C−1
suh that

∫

D
C(r, r1)C

−1(r1, r
′)dr1 = δ (r− r′) .

The major property of a Langevin dynamis is that the stationary probability

density funtional is known a-priori. It is

Ps[q] =
1

Z
exp

(
−G[q]

γ

)
,

where Z is a normalization onstant. At a formal level, this an be heked eas-

ily by writing the Fokker-Plank equation for the evolution of the probability

funtionals. Then the fat that Ps is stationary readily follows from the Liouville

theorem and the property that G is a onserved quantity for the deterministi

dynamis.

4.2.2 Reversed Langevin dynamis

We onsider I a linear involution on the spae of �elds q (I is a linear funtional

with I2 = Id). We de�ne the reversed Langevin dynamis with respet to I as

∂q

∂t
= Fr [q] (r) − α

∫

D
Cr(r, r

′)
δGr
δq(r′)

[q] dr′ +
√
2αγη, (35)
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