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Foreword

Following the previous schools, which have taken place in Kazimierz every two
years since 2005, the Institute of Theoretical Physics of the University of Warsaw
organized the 5th Warsaw School of Statistical Physics (June 22th to 29th, 2013).
The program of the school was essentially composed of six courses corresponding
to various areas of research in the field of statistical physics. Six distinguished
scientists presented pedagogical series of lectures bringing a clear explanation of
basic theoretical ideas, and encouraging further research. The lectures were at-
tended by PhD students, postgraduate researchers, and also by more experienced
scientists interested in getting acquainted with a new field.

The present volume contains the texts of the courses. We are grateful to the
invited speakers for their willingness to make their lecture notes ready for pu-
blication. We do hope the volume will be useful not only to the participants of
the school but also to all those interested in the current development of ideas in
statistical physics.

It is also a pleasure to acknowledge all those individuals and organizations
(listed overleaf) who contributed to the success of the school.
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Non-equilibrium Statistical Mechanics of
the Stochastic Navier—Stokes Equations
and Geostrophic Turbulence

Freddy Bouchet, Cesare Nardini, and Tomas Tangarife

Abstract Two-dimensional and geophysical turbulent flows have the property to
self organize and create large scale coherent jets and vortices. This is for instance
one of the major processes for the dynamics of Earth’s atmosphere. Following On-
sager initial insight, based on conjugated works by mathematicians and physicists,
this fundamental physical process has found some explanations in the framework
of statistical mechanics. An important step, initiated twenty years ago, has been
the study of the equilibrium statistical mechanics for the 2D Euler and the related
quasi-geostrophic models (the Miller-Robert-Sommeria theory).

Real geophysical and experimental flows are however dissipative and maintained
by external forces. These lectures focus on recent theoretical development of the
statistical mechanics of those non-equilibrium situations. Those progresses have
been achieved using tools from field theory (path integrals and instantons), non-
equilibrium statistical mechanics (large deviations, stochastic averaging). The aim
of these lectures is to briefly introduce the theoretical aspects of this program in
the simplest context: the 2D stochastic Euler or Navier-Stokes equations and the
quasi-geostrophic equations.

We review path integral representations of stochastic processes, large deviations
for transition probabilities, action minimization, instanton theory, for general me-
chanical systems forced by random forces. We will apply this framework in order
to predict equilibrium and non-equilibrium phase transitions for the 2D Euler,
Navier-Stokes, and quasi-geostrophic dynamics, and to predict the rates of rare
transitions between two attractors in situations of first order phase transitions.
Kinetic theory of systems with long range interactions, both with and without
stochastic external forces, are explained. Based on this kinetic theory, we predict
non-equilibrium phase transitions, and discuss their recent experimental observa-
tions and numerical simulations.

Even if the model we have considered so far are too simple academic models, the
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4 Freddy Bouchet, Cesare Nardini, and Tomas Tangarife

expected relevance of those approaches in the future for Earth atmosphere and
climate dynamics is briefly discussed.

1 Introduction

1.1 Self-organization of two-dimensional and geophysical
flows

Atmospheric and oceanic flows are three-dimensional (3D), but are strongly dom-
inated by the Coriolis force mainly balanced by pressure gradients (geostrophic
balance). The turbulence that develops in such flows is called geostrophic turbu-
lence. Models describing geostrophic turbulence have the same type of additional
invariants as those of the two-dimensional (2D) Euler equations. As a consequence,
energy flows backward and the main phenomenon is the formation of large scale
coherent structures (jets, cyclones and anticyclones). One such example is the
formation of Jupiter’s Great Red Spot, Fig. 1.

Fig. 1: Picture of Jupiter’'s Great Fig. 2: Zonally averaged velocity profile in the
Red Spot - a large scale vortex upper troposphere of Jupiter. The flow is organ-
situated  between bands of atmo- ised into alternating strong jets.

spheric jets. Photo courtesy of NASA:

http://photojournal.jpl.nasa.gov/catalog

/PIA00014.

The analogy between 2D turbulence and geophysical turbulence is further em-
phasized by the theoretical similarity between the 2D Euler equations, describing
2D flows, and the layered quasi-geostrophic or shallow water models, describing
the largest scales of geostrophic turbulence: both are transport equations for a
scalar quantity by a non-divergent flow, conserving an infinite number of invari-
ants.
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The formation of large scale coherent structures is a fascinating problem and
an essential part of the dynamics of Earth’s atmosphere and oceans. This is the
main motivation for setting up a theory for the self-organization of 2D turbulence.

1.2 Statistical mechanics of the self-organization of
two-dimensional and geophysical flows: Onsager’s
equilibrium route

Any turbulence problem involves a huge number of degrees of freedom coupled
via complex nonlinear interactions. The aim of any theory of turbulence is to
understand the statistical properties of the velocity field. It is thus extremely
tempting to attack these problems from a statistical mechanics point of view.

Statistical mechanics is indeed a very powerful set of theoretical tools that
allows us to reduce the complexity of a system down to a few thermodynamic
parameters. As an example, the concept of phase transition allows us to describe
drastic changes of the whole system when a few external parameters are changed.
Statistical mechanics is the main theoretical approach we develop in these lectures.
It succeeds in explaining many of the phenomena associated with two-dimensional
turbulence [13].

This may seem surprising at first, as it is a common belief that statistical me-
chanics is not successful in handling turbulence problems. The reason for this
belief is that most turbulence problems are intrinsically far from equilibrium. For
instance, the forward energy cascade in three-dimensional turbulence involves a
finite energy dissipation, no matter how small the viscosity (anomalous dissipa-
tion) (see for instance Onsager’s insightful consideration of the non-conservation
of energy by the three dimensional Euler equations [28]). As a result of this finite
energy flux, three dimensional turbulent flows cannot be considered close to some
equilibrium distribution.

By contrast, two-dimensional turbulence does not suffer from the anomalous
dissipation of the energy, so equilibrium statistical mechanics, or close to equi-
librium statistical mechanics makes sense when small fluxes are present. The
first attempt to use equilibrium statistical mechanics ideas to explain the self-
organization of two-dimensional turbulence dates from Onsager work in 1949 [51]
(see [28] for a review of Omnsager’s contributions to turbulence theory). Onsager
worked with the point-vortex model, a model that describes the dynamics of sin-
gular point vortices, first used by Lord Kelvin and which corresponds to a special
class of solutions of the 2D Euler equations. The equilibrium statistical mechanics
of the point-vortex model has a long and very interesting history, with wonderful
pieces of mathematical achievements [1; 18; 21; 26; 27; 37; 39; 51].

The generalization of Onsager’s ideas to the 2D Euler equations with a contin-
uous vorticity field, taking into account all invariants, has been proposed in the
beginning of the 1990s [45; 57; 58; 60], leading to the Miller—Robert—Sommeria
theory (MRS theory). The MRS theory includes the previous Onsager theory
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and determines within which limits the theory will give relevant predictions and
results.

The MRS theory deals with the microcanonical invariant measure. It predicts
that most microscopic states (vorticity field) concentrate into a single macrostate
(most vorticity fields basically have the same large scale velocity field). This
explains why one should expect the flow to self-organize into this equilibrium
macrostate. This equilibrium macrostate is characterized by the maximization of
an entropy with some constraints related to dynamics invariants. The aim of sec-
tion 3 is to sketch the derivation of this variational problem, which is the basis
of the theory. Then application to the Great Red Spot of Jupiter will be briefly
summarized.

These two points constitute a very brief overview of equilibrium statistical me-
chanics. Over the last fifteen years, the RSM equilibrium theory has been applied
successfully to a large class of problems, for both the two-dimensional Euler and
quasi-geostrophic equations. This includes many interesting applications, such as
the predictions of phase transitions in different contexts, a model for the Great
Red Spot and other Jovian vortices, and models of ocean vortices and jets. A
detailed description of the statistical mechanics of 2D and geophysical flows (the-
ory) and of these geophysical applications is presented in the review [13]. Older
reviews or books [40; 42; 64], give a very interesting complementary viewpoint,
stressing mainly the theory and laboratory experiments. The note by Y. Pomeau
[54] gives also a very interesting comment on the reason why the two-dimensional
Euler equations, by contrast with most other equilibrium approach for classical
field theory, does not suffer from the Rayleigh-Jeans paradox (basically the fact
that a classical field has an infinite heat capacity). This point is further discussed
in [13]. Finally we stress that equilibrium statistical mechanics for two dimen-
sional and geophysical flows is still a very active subject, with many contribution
during the last few years [8; 24; 33-35; 48; 49; 55; 66; 70; 71; 73], many of them
by bright young scientists.

As far as equilibrium statistical mechanics is concerned, the aim of these lecture
is just to explain the basis of Miller—Robert—Sommeria theory, explain how to
compute the entropy of macrostate and thus their probability through the use of
large deviation theory. We discuss these points in section 3 at a level which is as
elementary as possible.

1.3 Non-equilibrium statistical mechanics of the
self-organization of two-dimensional and geophysical
flows: statistical mechanics and dynamaics

Most of natural turbulent flows are not freely evolving, they are rather con-
stantly forced and dissipated. Then, in statistically stationary regimes, power
input through external forces balance energy dissipation on average. In the limit
of very small forces and dissipation, compared to conservative terms of the dy-
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namics, it is expected to find a strong relation between these non-equilibrium
flows and some of the states predicted by equilibrium statistical mechanics. In
order to give a precise meaning to this general idea, and to deal with far from
equilibrium situations, it is essential to develop also the non-equilibrium statisti-
cal mechanics of the 2D Euler, 2D Navier-Stokes and barotropic quasi-geostrophic
equations. As we discuss below, this has been the subject of recent key advances
in the applications of statistical mechanics to turbulent flows. This is actually the
main subject of these lectures.

We present two non-equilibrium statistical mechanics approaches: the first deals
with non-equilibrium first order phase transitions and the computation of transi-
tion rates using large deviations, and the second is a kinetic theory approach to
the prediction of the large scale flows.

1.3.1 Statistical mechanics of paths in phase space and
non-equilibrium bistable turbulent flows

Many turbulent flows can evolve and self-organize towards two or more very differ-
ent states. In some of these systems, the transitions between two of such states are
rare and occur relatively rapidly. Examples include the Earth magnetic field rever-
sals (over geological timescales) or in magnetic field reversal in MHD experiments
(e.g. the Von Karméan Sodium (VKS) turbulent dynamo in Fig. 3) [3], Rayleigh-
Bénard convection cells [17; 20; 50; 65], 2D turbulence [10; 41; 63] (see Fig. 4),
3D flows [56] and for ocean and atmospheric flows [62; 72]. The understanding
of these transitions is an extremely difficult problem due to the large number of
degrees of freedoms, large separation of timescales and the non-equilibrium nature
of these flows.

However, for forced-dissipated turbulent systems it is unclear how to define
the set of attractors for the dynamics. Although, in the limit of weak forcing
and dissipation, one would expect that the set of attractors would converge to
the ones of the deterministic equation. In the case of the 2D Euler equations,
equilibrium statistical mechanics in the form of the equilibrium Miller-Robert—
Sommeria theory allows for the prediction set of attractors for the dynamics.
They are a subsets of the steady states of the 2D Euler equations, then equilibrium
statistical mechanics gives a first partial answer to the question of attractors.

Moreover, simulations of the 2D Navier-Stokes equations in the weak force
and dissipation limit showed that the dynamics actually concentrates precisely
close to the set of the 2D Euler equations attractors [10]. Interestingly, the same
simulation showed sporadic non-equilibrium phase transitions, where the system
spontaneously switched between two apparently stable steady states resulting in
a complete change in the macroscopic behavior (see figure 4). If the forces and
dissipation are weak, then these transitions are actually extremely rare, occurring
on a timescale much longer than the dynamical timescale.

In such situations, when the turbulent flow switches at random times from one
type of attractor to another, a theoretical aim is to compute the transition rate.
It is also often the case that most transition paths from one attractor to another
concentrate to a single path, then a natural aim is to compute this most probable
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Fig. 3: Figure taken from [3] showing random transitions between meta-stable orientations of
the magnetic field in an experimental turbulent dynamo. The main azimuthal component of the
magnetic field is shown in red.

Fig. 4: Figure taken from [10] showing rare transitions (illustrated by the Fourier component
of the largest y mode) between two large scale attractors of the periodic 2D Navier-Stokes
equations. The system spends the majority of its time close to the vortex dipole and parallel
flows configurations.

path. In order achieve those aims, we will use a path integral representation of
the transition probabilities and study its semi-classical limit, in an asymptotic
expansion where the small parameter is the one that determines both the force
and dissipation amplitude. In this limit, if this semi-classical approach is relevant,
one expects a large deviation result, similar to the one obtained through the
Freidlin-Wentzell theory[30]. In order to illustrate in a pedagogical way the general
approach, we will treat in these lectures the classical case of the Kramer model
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(computation of the transition rate for a particle in a double well potential). We
will generalize the discussion to a set of Langevin dynamics that includes the
two-dimensional Euler and Quasi-Geostrophic Langevin dynamics, and finally we
will discuss partial results for the two-dimensional Navier-Stokes equations when
detailed balance is not satisfied. Those different points are discussed in section
4.4.

1.3.2 Kinetic theory of zonal jets

One example of spontaneous emergence of large-scale coherent structures in geo-
physical flows is the formation of zonal (east-west) jets. The common pictures
of Jupiter perfectly illustrate this fact: the surface flow is clearly organized into
parallel, alternating zonal jets as shown in figure 2, with also the presence of giant
and very stable vortices such as the Great Red Spot. Such large scale features are
on one hand slowly dissipated, mainly due to a large-scale friction mechanism, and
on the other hand maintained by the small-scale turbulence, through Reynolds’
stresses. The main mechanism is thus a transfer of energy from the forcing scale
(due to barotropic and baroclinic instabilities) to the turbulent scales and until
the scale of the jets.

An important point in this phenomenology is the fact that the turbulent fluc-
tuations are of very weak amplitude compared to the amplitude of the zonal jet,
and that they evolve much faster. This means that the typical time scale of ad-
vection and shear of the fluctuations by the jet is much smaller that the typical
time scale of formation or dissipation of the whole jet. This time scale separation
is a very specific property of the geophysical large-scale structures.

In this turbulent context, the understanding of jet formation requires averag-
ing out the effect of rapid turbulent degrees of freedom in order to describe the
slow evolution of the jet structure. Such a task, an example of closure, is usually
extremely hard to perform for turbulent flows. Using the time-scale separation
mentioned earlier, we prove that it can be performed explicitly in this problem.
This approach, called a kinetic theory by analogy with similar approaches in the
statistical mechanics of systems with long range interactions, is presented in sec-
tion 5.

1.4 A contemporary approach of statistical mechanics: large
deviation theory

Onsager was the first to consider a statistical mechanics explanation of two-
dimensional turbulent flows [51]. At the time he was scientifically active, Onsager
made a large number of decisive contributions to statistical mechanics theory:
solutions of the 2D Ising model, reciprocity relations, contributions to the sta-
tistical mechanics of electrolytes and turbulence, and so on. Since that time the
theoretical approaches for treating statistical mechanics problems have been com-
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pletely renewed. One of the main changes has been the use of the language of
large deviation theory for more than 30 years. For instance, recent results in the
understanding of equilibrium statistical mechanics problems, proving fluctuation
theorems (Omnsager’s reciprocity relations generalized far from equilibrium), and
in dealing with non-equilibrium statistical mechanics problems, are all related to
large deviation theory.

Interestingly, as we discuss in these lectures, the route proposed by Onsager in
his 1949 paper [51] in order to understand the self-organization of two-dimensional
flows, led a few decades later to some of the first applications of large deviation
theory to equilibrium statistical mechanics problems.

The theory of large deviations deals with the asymptotic behavior of the expo-
nential decay of the probabilities of rare or extreme events. The associated limiting
parameter is usually taken to be the number of observations, the number of par-
ticles, but can be other parameters, such as vanishing noise or the temperature
of a chemical reaction, or large time. Large deviation theory can be considered
a generalization of the central limit theorem, with the refinement of including
information about the behavior of the tails of the probability density. The main
result of large deviation theory is the large deviation principle, a result describing
the leading asymptotic behavior of the tails or large deviations of the probability
distribution in the limit N — co. For instance, the large deviation principle for a
random variable X is

1
Jim —loglP(Xy = )] = I(x), 1)
where P is the probability density for the random variable Xy, and I(z) is called
the rate function. For instance, if Xy = (1/N) Ziil x;, where x; are independent
identically distributed random variables then I(x) is given by Cramer’s theorem.

Beside the applications described in the previous sections, the aim of these
lectures is to explain and derive heuristically large deviation results for the equi-
librium statistical mechanics of the two-dimensional Euler and quasi-geostrophic
equations (equilibrium) and for the 2D Navier-Stokes or quasi-geostrophic equa-
tions with stochastic forces (non-equilibrium). The large deviation result for the
equilibrium case (section 3) is derived through a generalization of Sanov theorem,
and leads to a formula for the probability of macrostates for the microcanoni-
cal measures. The large deviation results for the non-equilibrium cases (section
4.4) are derived through semi-classical limits in path integrals (or equivalently
the Freidlin-Wentzell framework) and lead to the evaluation of transition paths
and transition probabilities for bistable turbulent flows, close to non-equilibrium
phase transitions.

1.5 Organization of those lectures

In section 2, we state the equations of motion and their conservation laws. In sec-
tion 3, we construct microcanonical invariant measures for the 2D Euler equations



1 Stochastic Navier—Stokes Equation and Geostrophic Turbulence 11

and discuss the entropy maximization problem in predicting the most probably
steady states on the 2D Euler equation. In section 4.4, we discuss large devia-
tions for non-equilibrium problems and illustrate this using a simple academic
example, the problem of computation of transition rate for the Kramer problem,
followed by the application to the 2D Navier-Stokes equations. Finally, in section
5 we discuss the kinetic theory of zonal jets for the barotropic quasi-geostrophic
dynamics.

2 The 2D Euler, barotropic Quasi Geostrophic, and
stochastic Navier—Stokes equations

2.1 Equations of motion

The aim of this section is to present the simplest model that describes two-
dimensional and geophysical turbulent flows: the two-dimensional Navier-Stokes
equation and the barotropic equation with stochastic forcing. In the limit when
forces and dissipation go to zero, the two-dimensional Navier-Stokes equation re-
duces to the two-dimensional Euler equation. We describe the conservation laws
for these equations and their influence on the dynamics. The review [13] gives a
very brief introduction to geophysical fluid dynamics and the quasi-geostrophic
model. A more complete introduction is found in textbooks of geophysical fluid
dynamics [53; 68].

We are interested in the non-equilibrium dynamics associated to the two-
dimensional stochastically forced barotropic equations (also called barotropic
Quasi-Geostrophic equations):

dq

5 +v[g—h] -Vg=—aw+rvAw + V2an, (2)
Vee.x Vi, q=w+h(y)=Ap+h, (3)

where w, v and v are respectively the vorticity, the non-divergent velocity, and
the streamfunction. For simplicity, in these lectures we consider the dynamics on
a periodic domain D = [0,207) x [0, 27) with aspect ratio §. Then ¢ is periodic
with the further condition fD dr ¢ = 0. ¢ is the potential vorticity, and h is a
given topography function with fD dr h = 0. For h = 0, the barotropic equations
reduces to the 2D Navier-Stokes equation.

The linear friction term —aw models large scale dissipation. We consider non-
dimensional equations, where a typical energy is of order 1 (see [13]) such that v
is the inverse of the Reynolds number and « is the inverse of a Reynolds number
based on the large scale friction. We assume that the Reynolds numbers satisfy
v < a < 1. In the limit of weak forces and dissipation lim,_qlim, g, the 2D
Navier-Stokes equations converge to the two-dimensional Euler equations for finite
time, but the type of forcing and dissipation determines to which set of attractors
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the dynamics evolve to over a very long time. The curl of the forcing 7(x,t) is
a white in time Gaussian field defined by (n(x,t)n(x’,t")) = C(x —x')o(t — ),
where C' is the correlation function of a stochastically homogeneous noise.

The two-dimensional Euler equations (h = 0), or the inertial barotropic equa-
tion (h # 0), are given by Eq. (2) with forces and dissipation set to zero
(a=v=0).

2.2 Conservation laws for the inertial dynamics

The kinetic energy of the flow is given by

6[q]:;/ arv? =5 [ ax (v /dr (a—h)o, (4)

where the last equality is obtained with an integration by parts. The kinetic energy
is conserved for the dynamics of the two-dimensional Euler and inertial barotropic
equations i.e. d€/dt = 0,. These equations also conserve an infinite number of
functionals, named Casimirs. They are related to the degenerate structure of
the infinite-dimensional Hamiltonian system and can be understood as invariants
arising from Noether’s theorem [61]. These functionals are of the form

Culg) = /D s(g)dr, (5)

where s is any sufficiently regular function. We note that on a doubly-periodic
domain the total circulation
r= | qar (6)
D

is necessarily equal to zero: I' = 0.

The infinite number of conserved quantities are responsible for the equations
having an infinite (continuous) set of steady states (see section 2 in [13]). Any
of the infinite number of steady states of the 2D Euler or inertial barotropic
equations satisfy

v-Vqg=0.

For instance, if there is a functional relation between the potential vorticity and
the streamfunction, i.e. ¢ = Ay = f(¢), where f is any continuous function, then
using 2 one eagily check that v-Vg = 0. Physically, these states are important
because some of them act as attractors for the dynamics.

There is also a strong empirical and numerical evidence that a complex evolu-
tion of the two-dimensional Euler equations leads most of the times to attractors
that are steady states of the equations. The specific function f that is reached
after a complex evolution can be predicted in certain situation using equilibrium
statistical mechanical arguments presented in the next section (see [13] for more
details).
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2.3 The conservation of the vorticity distribution

The two-dimensional Euler and inertial barotropic equations conserve the dis-
tribution of potential vorticity, i.e. the total area of a specific potential vorticity
level set is conserved. As we explain now the conservation of the potential vorticity
distribution is equivalent to the conservation of all Casimirs.

We first prove that the potential vorticity distribution is conserved as a con-
sequence of Casimir conservation laws. We consider the special class of Casimir

(5):
O(O’)Z/D H(—q+ 0)dr, (7)

where H(-) is the Heaviside step function. The function C(o) returns the area

occupied by all potential vorticity levels smaller or equal to o. C(c¢) is an invariant

for any ¢ and therefore any derivative of C(o) is also conserved. Therefore, the

distribution of vorticity, defined as D(c) = C’(o), where the prime denotes a

derivation with respect to o, is also conserved by the dynamics. The expression

D(o)do is the area occupied by the vorticity levels in the range o < ¢ < o + do.
Moreover, any Casimir can be written in the form

Crla) = /D do f(0) D(o).

The conservation of all Casimirs, Eq. (5), is therefore equivalent to the conserva-
tion of D(o).

The conservation of the distribution of vorticity levels, as proven above, can also
be understood from the equations of motion. We find that Dg/Dt = 0, showing
that the values of the potential vorticity field are Lagrangian tracers. This means
that the values of g are transported through the non-divergent velocity field, thus
keeping the distribution unchanged.

From now on, we restrict ourselves to a K-level vorticity distribution. We
make this choice for pedagogical reasons, but a generalization of the discussion of
next section to a continuous vorticity distribution is straightforward. The K-level
vorticity distribution is defined as

K
D(0) =Y Apd(o — ov), (8)
k=1

where Ay denotes the area occupied by the vorticity value o;. The areas Ay are
not arbitrary, their sum is the total area Eszl Ay = |D|. Moreover, the constraint

(6), imposes the constraint Zi{:l Aoy = 0.
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3 Equilibrium statistical mechanics and the mean field
variational problem as a large deviation result

3.1 Large deviation theory in 2D turbulence, the
equilibrium mean field variational problem

The first large deviation results in two-dimensional turbulence have been obtained
in the context of the theory for the 2D Euler equations. Michel and Robert [44]
have studied the large deviation of Young measures and have suggested that the
entropy of the Miller—Robert—Sommeria theory is the analogue of a large deviation
rate function. By considering a prior distribution for the vorticity invariants, in a
framework where the invariants are considered in a canonical ensemble rather than
in a microcanonical one, Boucher and collaborators [5] have given a derivation of a
large deviation result based on finite dimensional approximations of the vorticity
field. The beginning of the nineties has also been a time of intense study of the
statistical mechanics of the point vortex model [4; 18; 27; 28; 38; 39], a special
class of solution of the two-dimensional Euler equations. Among those study, large
deviations results for the equilibrium measures where also obtained.

The aim of this section is to present a heuristic construction of microcanonical
invariant measures for the 2D Euler equations. This construction primarily follows
the initial ideas of the previous works [5; 44], but is much simplified. Moreover, for
pedagogical reasons, the reading of this heuristic presentation does not imply any
knowledge of large deviation theory and avoids any technical discussion. These
measures are constructed using finite dimensional approximation of the vortic-
ity field, with N2 number of degrees of freedom. N? is then the large deviation
parameter and the entropy appears as the analogue of the large deviation rate
function.

In order to state the main result, let us define p(r,o) as the local probability
to observe vorticity values equal to o at point r: p(r,o) = (§(w(r) — o)), where
d is the Dirac delta function (we consider averaging (-) over the microcanonical
measure, see section 3.2). We also define w(r) = [ do op(r,o) the local vorticity
average. Then the large deviation rate function for p(r,o) is S(Eo) — S[p, Eo]
where

Slp, Eo] = Slp) = /D 3 pe o e (9)

if the constraints N[p| = 1, Vk, Alpx] = A and E[w] = Ey are satisfied, and
S[p, Ey] = —oo otherwise, and where

S(Eo)= sup {S[p] | E[w] = Eo, Vk Alpi] = Ax}, (10)
{p | Nlp]=1}

with Fy, Ax and N, the energy, the vorticity distribution, and the probability
normalization defined in section 3.3 respectively.

The interpretation of this result is that the most probable value for the lo-
cal probability is the maximizer of the variational problem (10), and that the
probability to observe a departure from this most probable state is exponentially
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large, with parameter N2 and rate function (9). Furthermore, the classical mean
field equation for the streamfunction ¥ can be derived from (9), as discussed in
reference [6].

In next sections, we define precisely the microcanonical measure for the 2D Eu-
ler equations (section 3.2) and prove that the entropy S[p, o] is a large deviation
rate function for p (section 3.3). This justifies the mean field variational problem
(10).

3.2 Microcanonical measure

In order to properly construct a microcanonical measure, we discretize the vor-
ticity field on a uniform grid with N? grid points, define a measure on the corre-
sponding finite-dimensional space and take the limit N — co. A uniform grid has
to be chosen in order to comply with a formal Liouville theorem for the 2D Euler
equations [14; 59].

We denote the lattice points by r;; = (ﬁ, %), with 0 < 4,7 < N —1 and denote
wij = w(r;;) the vorticity value at point r;;. The total number of points is N2.

As discussed in the previous section, we assume D(o) = Zszl Apd(o — ok).
For this finite-N approximation, our set of microstates (configuration space) is
then

Xn = {w" = (wij)o<ij<n—1 | Vi,jwi; € {o1,...,0k}
and Vk #{wij | Wiy = O'k} = N2Ak} .

Here, #(A) is the cardinal of set A. We note that X depends on D(o) through
Ay, and oy, (see (8)).
Using the above expression we define the energy shell I'y(Ey, AE) as

I'n(Eo, AE) = {w" € Xy | Ey < &y [wV] < Eg + AE},

where

1 N-1 1 N-1
_ 2 _ aly.
En = 5nz D Vi = ~anz 2 @it

1,j=0 1,j=0

is the finite-N approximation of the system energy, with v;; = v(r;;) and ¢;; =
¥ (r;;) being the discretized velocity field and streamfunction field, respectively.
AF is the width of the energy shell. Such a finite width is necessary for our discrete
approximation, as the cardinal of X is finite. Then the set of accessible energies
on Xy is also finite. Let Ay FE be the typical difference between two successive
achievable energies. We then assume that AyE < AE < Ey. The limit measure
defined below is expected to be independent of AE in the limit N — oo.

The fundamental assumption of statistical mechanics states that each mi-
crostate in the configuration space is equiprobable. By virtue of this assumption,
the probability to observe any microstate is Qg,l(Eo, AE), where 25 (Ey, AE) is
the number of accessible microstates, i.e. the cardinal of the set I'n (Eo, AE). The
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finite- N specific Boltzmann entropy is defined as
1
SN(E07AE): mlog QN(E07AE) (].].)

The microcanonical measure is then defined through the expectation values of
any observable A. For any observable A[w] (for instance a smooth functional of

the vorticity field), we define its finite-dimensional approximation by Ay [wN ]
The expectation value of Ay for the microcanonical measure reads
1
FEy, AE), A N =(A N = A N
<HN( 05 ), N[w ]>N < N[w ]>N On By, AE) Z N[w ]

wN ey (Eo,AE)

The microcanonical measure p for the 2D Euler equation is defined as a limit of
the finite-N measure:

(u(Eo), Alw]) = lim (un(Eo, AE), Ay [w"]) .
The specific Boltzmann entropy is then defined as

S(Ey) = lim Sy (Eo, AB). (12)

3.3 The mean field variational problem as a large deviation
result

Computing the Boltzmann entropy by direct evaluation of Eq. (12) is usually an
intractable problem. However, we shall proceed in a different way and show that
this alternative computation yields the same entropy in the limit N — oco. We
give heuristic arguments in order to prove that the computation of the Boltzmann
entropy Eq. (12) is equivalent to the maximization of the constrained variational
problem (10) (called a mean field variational problem). This variational problem
is the foundation of the RSM approach to the equilibrium statistical mechanics for
the 2D Euler equations. The essential message is that the entropy computed from
the mean field variational problem (10) and from Boltzmann’s entropy definition
(12) are the equal in the limit N — oco. The ability to compute the Boltzmann
entropy through this type of variational problems is one of the cornerstones of
statistical mechanics.

Our heuristic derivation is based on the same type of combinatorics arguments
as the ones used by Boltzmann for the interpretation of its H function in the
theory of relaxation to equilibrium of a dilute gas. This derivation doesn’t use the
technicalities of large deviation theory. The aim is to actually obtain the large
deviation interpretation of the entropy and to provide a heuristic understanding
using basic mathematics only. The modern mathematical proof of the relationship
between the Boltzmann entropy and the mean field variational problem involves
Sanov theorem.
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Macrostates are set of microscopic configurations sharing similar macroscopic
behaviors. OQur aim is to properly identify macrostates that fully describe the
main features of the largest scales of 2D turbulent flow, and then to compute
their probability or entropy.

Let us first define macrostates through local coarse-graining. We divide the
N x N lattice into (N/n) x (N/n) non-overlapping boxes each containing n? grid
points (n is an even number, and N is a multiple of n). These boxes are centered
on sites (¢,7) = (In, Jn), where integers I and J verify 0 < I,J < N/n — 1. The
indices (I, J) label the boxes.

For any microstate w™ € I'y, let fF; be the frequency to find the value oy in
the box (I, J)

1 I+n/2 J+n/2

Frpwh) = o > > bqwi; —ow),

i=I-n/2+1 j=J—n/2+1

where 04(z) is equal to one whenever x = 0, and zero otherwise. We note that for
K
all (I, J), >, FF(w?) = 1.

A macrostate py = is the set of all microstates of

pIICJ}OSI,JgN/n—l;ISkSK’
w™ € Xy such that FF,(w™) = pk; for all I, J, and k (by abuse of notation, and
for simplicity, py = {plch}O<I,J<N/n—1;1<I~c<K refers to both the set of values and
to the set of microstates having the corresponding frequencies). The entropy of
the macrostate is defined as the logarithm of the number of microstates in the

macrostate
1
Snlpn] = mlog (# {wN € XN‘ for all I,J, and k, FF,;(w™) :p’}J}). (13)

Following an argument by Boltzmann, it is a classical exercise in statistical me-
chanics, using combinatorics and the Stirling formula, to prove that in the limit
N > n> 1, without taking into account of the area constraints Ay, the entropy
of the macrostate would converge to

o N/n—1 K

N>n>1 n
Snlpn] 7~ Snlpn] = Nz Z ZPI;J log pf;
1,J=0 k=1

if VI,J, Nprs] = 1, and Sn[pn] ~ —oc otherwise, where Nprs] = X, ph ;.

The area constraints are easily expressed as constraints over py: Ay [pﬁ“\,] =
17\1[—2 ﬁvgzgl pk, = A and VI, J, Npr;s] = 1. An easy generalization of the above

formula gives
Swlpw] N>l o o]

if Vk, An [p%] = Ak, and Sy[pn] ~ —oo otherwise. In the theory of large devia-
tion, this result could have been obtained using Sanov’s theorem. We now consider
anew macrostate (py, Eo) which is the set of microstates w” with energy Ex [w” ]
verifying Fg < En [wN] < Ey+ AF (the intersection of I'y (Ey, AE) and py). For
a given macrostate py, not all microstates have the same energy. The constraint
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on the energy thus can not be recast as a simple constraint on the macrostate py.

Then one has to treat the energy constraint in a more subtle way. The energy is

N-1

1
En [WN] = =55 D wir-

,5=0

The streamfunction ¢f}’ is related to w? through

E Gijir J’W /

z’j_

where G; 5 is the Laplacian Green function in the domain D. In the limit
N > n > 1, the variations of Gj;i/; for (¢, ;') running over the small box (I, J)
are vanishingly small. Then Gj; ;s can be well approximated by their average
value over the boxes Gy ;. Then

N/n—-1 I+n/2 J+n/2 n2 N-1
bij 21 =g Y GIJI’J’ ) ) wily = 377 > Grirgw),
I’ ,J'= i/=I-n/24+1j'=J—n/2+1 I’,J'=0

where the coarse-grained vorticity is defined as

I4+n/2 J4+n/2

— 1
WIJ—E wl/]

V'=I—n/2+1 j'=J—n/2+1

We note that, over the macrostate py, the coarse-grained vorticity depends on

pn only:
K

w% = Zp’fJok for WV € PN-
k=1
Using similar arguments, it is easy to conclude that in the limit N > n > 1 the
energy of any microstate of the macrostate py is well approximated by the energy
of the coarse-grained vorticity

5 N/n—1

Ny NSl o [—x] _ D —~, N

5N [w ] ~ gN |:le __2N2 Z wIJ/wIJ'
1,J=0

Then the Boltzmann entropy of the macrostate is
Swlpx, Bol "7 Sy lpw] (14)

if Vk, N[pm = 1, AN [p;cv] = Ak and EN [w—%} = Eo, and SNLPN,E()] ~ —00
otherwise.

Consider Py g,(pn) to be the probability density to observe the macrostate
pn in the finite- IV microcanonical ensemble with energy Ey. By definition of the



1 Stochastic Navier—Stokes Equation and Geostrophic Turbulence 19

microcanonical ensemble of the entropy Sy (Ep) (see Eq. (11) and the preceding
paragraph), we have

log Pk, (p) " =% N? [Sn[p. Bo] — Sn(Eo)) - (15)

From the general definition of a large deviation result given by Eq. (1), we clearly
see that formula (14) is a large deviation result for the macrostate py in the micro-
canonical ensemble. The large deviation parameter is N2 and the large deviation
rate function is —Sy[pn, Eo] + Sn(Ep).

We now consider the continuous limit. The macrostates p% are now seen as
the finite-N approximation of py, the local probability to observe w(r) = oy:
pr(r) = (6(w(r) —ok)). The macrostate is then characterized by p = {p1,...,px }.
Taking the limit N > n > 1 allows us to define the entropy of the macrostate

(p, Eo) as
Slp, Eo) = Slp] = Z /D prlogp dr (16)

if Vk Npx] = 1, Apg] = Ay and E[w] = Ey, and S[p, Ey] = —oo otherwise. In
the same limit, it is clearly seen from definition (13) and result (16) that there
is a concentration of microstates close to the most probable macrostate. The
exponential concentration close to this most probable state is a large deviation
result, where the entropy appears as the opposite of a large deviation rate function
(up to an irrelevant constant).

The exponential convergence towards this most probable state also justifies the
approximation of the entropy with the entropy of the most probable macrostate.
Thus, in the limit N — oo we can express the Boltzmann entropy, Eq. (12), as

S(Eo)= sup {S[p] | E[w] = Eo, Vk Alpi] = Ax}, (17)
{p | Nlp]=1}

where p = {p1,...,px} and V r, Np|(r) = Zle pr(r) = 1 is the local nor-
malization. Furthermore, A[p”] is the area of the domain corresponding to the
vorticity value w = oy. The fact that the Boltzmann entropy S(Ey) Eq. (12) can
be computed from the variational problem (17) is a powerful non-trivial result of
large deviation theory.

3.4 Applications of equilibrium statistical mechanics

In the two previous sections, we have defined the microcanonical measure for
the two-dimensional Euler and quasi geostrophic equations, and we have proven
that the logarithm of the probability of a macrostate p is given by the macrostate
entropy (16). We can conclude that most of the microstates will correspond to the
most probable macrostate, the one that actually maximize the variational problem
(17). This most probable macrostate is called the equilibrium macrostate. This
means that if we take a random microstate, it will nearly surely have the same
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Observation (Voyager) Statistical Equilibrium

Fig. 5: Left: the observed velocity field is from Voyager spacecraft data, from Dowling and
Ingersoll [25] ; the length of each line is proportional to the velocity at that point. Note the
strong jet structure of width of order R, the Rossby deformation radius. Right: the velocity
field for the statistical equilibrium model of the Great Red Spot. The actual values of the jet
maximum velocity, jet width, vortex width and length fit with the observed ones. The jet is
interpreted as the interface between two phases; each of them corresponds to a different mixing
level of the potential vorticity. The jet shape obeys a minimal length variational problem (an
isoperimetrical problem) balanced by the effect of the deep layer shear.

velocity as the one of the equilibrium macrostate. As a consequence, we conclude
that equilibrium macrostates are natural candidates to model self organized large
scale turbulent flows, like for instance the Great Red Spot of Jupiter shown on
figure (1).

A number of works have considered the comparison of self-organized turbu-
lent flows with equilibrium macrostates. Interested readers will find compari-
son with experiments and numerical simulations described in the review [64],
whereas models of geophysical flows, for instance the Great Red Spot of Jupiter,
ocean mesoscale vortices, strong mid basin jets similar to the Gulf Stream or
the Kuroshio are discussed in the review [16]. Recent applications to model the
vertical structure of oceans can be found in the papers [70; 71].

As an example, figure 5 shows the comparison of the observed velocity field
for the Great Red Spot of Jupiter with the velocity field of an equilibrium
macrostate of the quasi-geostrophic model. The theoretical analysis of this equi-
librium macrostate [11] is based on an analogy with Van Der Walls—-Cahn-Hilliard
model of first order transition and the shape of the strong jet obeys a minimal
length variational problem (an isoperimetrical problem) balanced by the effect of
the deep layer shear (see [16] for more details).

Another example of equilibrium prediction is the phase diagram of statistical
equilibria for the two-dimensional Euler equation on a doubly periodic domain
(torus). This phase diagram (figure 6) shows that the statistical equilibria are
either dipoles (one cyclone and one anticyclone) or parallel flows. This example
is further discussed in the work [10] and the review [16]. This equilibrium phase
diagram has also been used in order to predict non-equilibrium phase transitions
[10] as is discussed in section 4.4.
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Unidirectional flow
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Fig. 6: Bifurcation diagrams for statistical equilibria of the two-dimensional Euler equations in
a doubly periodic domain a) in the g-a4 plane, g is related to the domain aspect ratio and a4 to
the fourth order moment of the vorticity distribution (please see [16]). b) obtained numerically
in the ' — a4 plane, E is the energy, in the case of doubly periodic geometry with aspect ratio
6 = 1.1. The colored insets are streamfunction and the inset curve illustrates good agreement
between numerical and theoretical results in the low energy limit.

4 Non equilibrium phase transitions, path integrals, and
instanton theory

The aim of this section is to discuss non-equilibrium phase transitions in turbulent
flows, more specifically for the dynamics of the two-dimensional Navier—Stokes
equations with random forces, quasi-geostrophic dynamics with random forces,
or related dynamics. We want to discuss simple examples for which situations
with rare transitions between two attractors exist (bistability). We will use path
integrals and large deviations in order to compute the most-probable paths for
those transitions and the transition rates.

In order to give a pedagogical presentation of path integrals and large devia-
tion theory for stochastic dynamics we first discuss the extremely classical case
of the Kramer problem: the over-damped dynamics of a particle in a double-
well potential, in section 4.1. We generalize these results to an abstract set of
dynamics, called Langevin dynamics, in section 4.2. We apply these results to
two-dimensional Euler and Quasi-Geostrophic Langevin dynamics in section 4.3,
for which we are able to predict bistability, compute transition rates and the most
probable transition paths. Finally we discuss path integral approaches and action
minimizer for the stochastic Navier-Stokes equations in a non-equilibrium context
in section 4.4.
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4.1 Large deviations for the overdamped Langevin dynamics

We wish first to give a pedagogical description of large deviation theory in non-
equilibrium systems, more specifically for dynamics consisting of stochastic
differential equations. Therefore, we begin by applying large deviation theory to
a simple academic example of an over-damped particle in a double-well potential
(the Kramer problem) where a large deviation result exists. We will show that
we can compute the transition rate for the motion of the particle from one well
to the other and that the result is an Arrhenius factor (it is proportional to the
exponential of the energy barrier height between the two wells). In fact, this is a
large deviation result.

This section develops classical ideas. We use the path integral formalism for
stochastic processes [52; 74]. Similar results are discussed by mathematicians in
the framework of the Freidlin-Wentzell theory [30; 67]. We are much interested by
the time-reversal symmetries of the action and its consequence for the symmetry
between relaxation and fluctuation paths, and its consequences for the compu-
tation of the most probable transition (instanton). Those symmetries are discuss
much less often than the other material, but there are also very classical (some
people say it dates from Omnsager, we do not know exactly).

4.1.1 The overdamped Langevin dynamics

We consider a single overdamped particle in a 1D double-well potential V(x)
and subjected to random forces due to a small coupling to a thermal bath. For
simplicity we considered the overdamped limit, for which the dynamics of the
particle position x is governed by the stochastic differential equation

. dVv 2
&= + Bn, (18)
where 7 is a random white noise with a Gaussian distribution characterized by
E [n(t)n(t)] = d(t—t'), V() is a double well potential (see Fig. 7),and 8 = 1/kgT
where T is the temperature. In the deterministic situation, when 1/ = 0, the
particle relaxes to one of the two stable steady states of the potential V' i.e. it
converges either to z = —1 or to x = 1. In the presence of thermal noise, the
particle may gain enough energy to jump the potential barrier at * = 0 and
settle in the other potential well. If the forcing is weak, i.e. 1 <« BAV, then
the jumps between wells will be rare events and will be statistically independent
from one another. They will then be described by a Poisson process characterized
by a transition rate A. We will show that one can apply the theory of large
deviations in order to compute A. Moreover the theory of large deviation will lead
to the conclusion that most of the transition paths concentrate close to the most
probable transition path. As will be discussed more precisely below, this most
probable transition path in this situation is called an instanton.

In order to obtain these results, we will use formal computations based on a
path integral formulation of the transition probabilities for the stochastic process



1 Stochastic Navier—Stokes Equation and Geostrophic Turbulence 23

(18). Such a path integral formulation is referred as Onsager-Machlup formal-
ism, as Onsager and Machlup first proposed it, few years after the path integral
formulation of quantum mechanics by Feynman.

0.8

0.6 |

04

0.2 r

Fig. 7: Graph of the double well potential V (z) = (22 — 1)2 /4. We observe two stable steady
states at = £1 and a saddle at £ = 0 with height AV = 1/4.

4.1.2 The transition probability as a path integral

To give a simple understanding of the Onsager-Machlup formalism, we first con-
sider a vector = {n;},,<y of independent Gaussian random variables, with
zero mean E(7;) = 0 and covariance E(1;n;) = d;;. By definition, the probablhty
measure of 7 is the Gaussian measure

dup = exp ( Z ) H dnl (19)

The Euler approximation of the Langevin equation (18) is, within the Ito conven-
tion,

dv 2At
T = xi—1 — At ——(25-1) + 7771‘

dz
for 1 <14 < N and with o = 2(0) a given initial state. The probability measure
of a particular path x = {x;}, ., is given by inverting (20) and inserting it in
(19), o

N o 2 N ‘
dp = exp <_§ Z (% + %(mz_1)> At) J(n\m)g j;_; (21)

i=1

(20)

In this expression, J(n|x) is the Jacobian of the change of variable 7 — x. In the
Ito convention (20), the corresponding matrix is lower-triangular with ones in the
diagonal, so that J(n|z) = 1.
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The measure of a Gaussian stochastic process n(t) of zero mean E[n(t)] = 0
and covariance E[n(¢)n(t')] = §(t —t'), on a time interval [0, T| with T'= N At, is
the formal generalization of the above finite dimensional measure (19),

T
dp = exp (—% / n2<t>dt> Dly. (22)

The differential element D[n] in the above expression is the formal limit of the

finite-dimensional quantity Hfil \%’—ﬁ for N — oo, At — 0, where n; = n(iAt) =

n(iT/N). People well trained in mathematics know the difficulty to define such
an object, but we will keep our discussion at a formal level and state that this
formal notation contains all the mathematical subtleties related to the limit N —
00, At — 0. Then, the probability measure of a particular trajectory {x(t)},<,<r
is also the formal limit of (21),

djt = exp <_§ /OT (1: + ‘;—Z>th> Tnla] Dl (23)

where J[n|z] is the Jacobian of the change of variable n — x, and is also equal to
one (we refer to [74] for a more general treatment, noting that [74] actually use
the Stratonovich convention).

The transition probability from an initial state xg at time 0 to a final state zp
at time 7" is the sum over all possible paths {z(t)},.,~, such that 2(0) = z¢ and

x(T) = xr of the probability of a single path (23). Such a sum can be formally
written as the path integral

z(T)=z7
P(xr,T;20,0) = /(0)— exp (—g.AM) Dlz], (24)

with the action functional

Alz] = %/OT <a: + ‘;—Z)th. (25)

From (24), it is clear that the most probable trajectories with prescribed initial
and final states are minimizers of the action with prescribed initial and final point.
The optimal action is denoted

A(zo, 27, T) = min {A[z] | (0) =z, 2(T) = 21} .

4.1.3 Fluctuation paths

When the initial point o = x, belongs to an attractor of the deterministic dy-
namics (for the Kramer problem, if zg = z, = £1 is a stable fixed points), it
is expected that the action A(z,,X,T) decreases with time. The action minima
starting from one attractor and having an infinite duration will thus play an im-



1 Stochastic Navier—Stokes Equation and Geostrophic Turbulence 25

portant role. Moreover, those infinite time action minimizers are essential because
the transition probability P(X,T;z,,0) converges to the stationary distribution
of the stochastic process when the time T goes to infinity. Those action minimizers
starting from one attractor and with an infinite duration are called fluctuation
paths, they solve

A(zq, X,00) = min {A[m} | lim 2(=T) = x4, z(0) = X}.

T—o0

4.1.4 Relaxation paths

We consider a state X that belongs to the basin of attraction of an attractor
x, of the deterministic dynamics. The relaxation path starting at z, denoted
{2r(t) }y<y< is defined by
o . av
Tp = ——(xy)

dz

with initial conditions z,-(0) = X. As the path converges to x,, we have z,.(+00) =
Z4. Using the expression of the action (25), we see that A[z,.] = 0, as the relaxation
path is a deterministic solution, and we also notice that A[z] > 0 for any path
{x(t)}y<i<p- As a consequence, relaxation paths are global minimizers of the
action A[z]. This is because following the deterministic dynamics z, in order to
reach the attractor z, starting from X doesn’t require any stochastic perturbation,
so that the cost is zero and the probability is maximal.

4.1.5 Time-reversal symmetry and the relation between fluctuation
and relaxation paths

In order to characterize fluctuations paths and instantons, we will take profit of
the time-reversal symmetry of the over-damped Langevin dynamics. We consider
a path {z(t)},<,<, and the reversed path R[z| = {z(T — t)},~,<,- The action of
the reversed path reads

air =5 [ (Sr+ Wima) =1 [ (a4 L) a

with the change of variable ¢’ = T' — ¢. Then, writing
av? avy? | .dv avy? | d
LA Y L L L IR
(‘r dz:) (‘H dz:) " (”” dz:) a” @

A[R[z]] = Alz] = 2(V (2(T)) = V(x(0))) - (26)

Plugging this relation into the path integral expression of the transition probabil-
ity (24), we obtain

we get
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P(R[z7], T; Rlzo],0) = P(zr, T; 0, 0) exp (V(x(T)]igTV(x(o))> .

We recognize the Gibbs stationary distribution of the over-damped Langevin equa-
tion Pg(z) = e~V (@/ksT g0 that the above expression gives the detailed balance
relation

P(.%‘T, T; Zo, O)Ps(l'o) = P(l‘o, T; xT, O)Ps(.%‘T)

We have thus proven that detailed balance is a consequence of the time-reversal
symmetry, as expected on general ground.

We now consider the fluctuation path from one attractor z, to any point X of
its basin of attraction. Using relation (26) and the fact that the action is always
positive, we have

Alz] = 2(V(2(T)) = V(2(0))), (27)

with equality if and only if x is a minimizer of the reversed action A[R[z]]. If the
initial state is an attractor and the final state is another point in the associated
basin of attraction, the reversed action A[R[z]] is naturally minimized by the
relaxation path R[z] = x, that goes from X to the attractor,

d dv
SRl = -

y (Rfa])

with R[z](0) = X and R[z](+0o0) = z,. Then the minimizer of A[z] is the reversed
relaxation path. We thus conclude that the fluctuation path from z, to X, is the
time reversed of the relaxation path from X to z,. This situation is schematically
represented in figure 8.

4.1.6 Instanton and large deviation principle

We define the instanton as the most probable path that go from one attractor
x_1 = —1 to the other one z; = 1 in an infinite time. More precisely we consider
z7 the minimizer of variational problem min {Afz] | 2 (=%) =21, 2 (%) =21},
and the instanton is the limit when T' — oo of x7. The instanton action is

Alx_1,21) = Th—>H;o min {,A[x] | z (—%) =2_1 and = (g) = xl} )

As will soon become clear, instantons are related to the most probable transition
paths, and their action to the transition rate .

From the previous discussion, it is easily understood that instantons are decom-
posed into two parts. First, there is the fluctuation path from z_; to the saddle
xs = 0, which is the reverse of the relaxation path from zs to z_;. The action of
this part of the trajectory is given by (26), it is A[R[z,]] =2 (V(zs) — V(z_1)) =
2AV, where AV is the potential barrier height. The second part of the instan-
ton trajectory is the relaxation path from the saddle x4 to the final attractor x;.
The action of this relaxation path is zero, so that the total instanton action is
Alz*] = 2AV.
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Relaxation

Fluctuation

Relaxation

Fluctuation

Fig. 8: Schematic representation of the
fluctuation and relaxation paths between

an attractor of the deterministic dynam- Fig. 9: Fluctuation and relaxation paths be-
ics o and another point X in the basin of tween an initial position xo and an attractor =1,
attraction of zo, for the over-damped dy- for the full Langevin dynamics 30. The fluctua-
namics. The relaxation path is the deter- tion path (reversed relaxation path) is obtained
ministic trajectory from x to xo, and the by reversal of time, so the momentum is changed
fluctuation path is the time-reversed trajec- as p — —p. Both trajectories are the most prob-
tory. Both trajectories are the most prob- able paths with the associated initial and final
able paths with the associated initial and conditions.

final states.

A more precise analysis shows that as both the fluctuation path to the saddle
and the relaxation path last for an infinite time (an infinite time is needed to quit
the attractor and an infinite time is needed to reach the saddle). This explains
the definition of the instanton through the limit of the finite time minimizer zp.
One can also understand that any temporal translation of an instanton is another
minimizer from on attractor x_; = —1 to the other one 21 = 1 in an infinite
time. This degeneracy is related to the notion of a “free-instanton-molecule” gas
approximation and has the consequence that for time 7" > 1, the transition
probability is proportional to time 7"

P(z1,T;z_1,0) "R AT.

We refer to [19] for a detailed discussion.

In the limit of small forcing 1 < SAV, the distribution given by the path
integral (24) is concentrated around its most probable state, the instanton we
have determined. We can thus apply a saddle-point approximation in order to get
the transition probability P,

1
lim —— log(P;) = AV. (28)
B—o0 ﬂ
Formula (28) states that the transition probability for observing the rare transition

between the two potential wells, in the limit of the weak noise limit, is proportional
to the exponential of the barrier height AV'. Such a result is called a large deviation
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principle for the probability P.. We recover the exponential factor of the Arrhenius
formula for the transition rate

1 AV
A= 7_exp( kBT) (29)
where AV is the energy barrier height and kg7 is the temperature.

The computation of the prefactor 1/7 goes beyond a large deviation result. It
was already computed by Kramer, for an overdamped Kramer dynamics. It was
the subject of Langer theory for systems with many degrees of freedom. Alterna-
tively, it can be computing in the path integral framework by computing the path
integrals at next order, computing the properties of the Gaussian processes close
to the instanton, and treating correctly the subtleties related to the instanton de-
generacy due to time translation. Such a computation can be found for example
in the reference [19]. The result is

LV PV e
T =27 <W(mo)w($_1)> .

4.1.7 Generalization to the inertial Langevin dynamics

We consider now the dynamics of a particle in the same double-well potential,
with random forces, but without the over-damped approximation. The position
and momentum of the particle {z,p} satisfy

{ilj:pdv (30)

__dv _ 2a
P="d; Pt BN

In this case, the time-reverse of a given path {z(t), p(t)} ;< is given by I [z, p] =
{z(T —t), —p(T — t)}g<y<r as represented in figure 9. It is easily proven that the
action of the reversed action path satisfies a relation similar to 26. Then, as in the
overdamped case, one easily proves that the fluctuation paths is the time reverse
of the relaxation paths. As in the over-damped case, instantons from one attractor
to the other are composed of a fluctuation path (time reversed relaxation path)
from the first attractor {x_1 = —1,p_1 = 0} to the saddle {0, 0}, and a relaxation
path from the saddle to the final attractor {1, 0}.

4.2 Langevin dynamics with potential G

The aim of this section is to generalize the results discussed for the Kramer model
in section 4.1 to a class of dynamics that corresponds to systems coupled with
equilibrium (thermal) baths. The consider dynamics with Liouville theorem (for
instance Hamiltonian dynamics), with dissipation which are the gradient of a
conserved quantity and stochastic forces with Einstein type relations. For those
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Langevin dynamics, we prove detailed balance (sometimes in a generalized form),
we prove that the fluctuation paths are the time reversed of the relaxation paths,
and we describe the instantons.

Whereas such Langevin dynamics are very common in physics, the discussion
below is original. As far as we know we are the first to describe this general
framework, especially for the case when the potential is not the Hamiltonian but
another conserved quantity. The aim is to apply this framework to dynamics that
include the two-dimensional Euler and quasi-gestrophic dynamics.

4.2.1 Definition of Langevin dynamics

In this section we consider the deterministic dynamics

Iq
—=F 31
=7l (31)
where ¢ is either a finite dimensional variable or a field.

If ¢ € RY, the dynamics is %‘? = F;[q]. We then assume that this dynam-

ical system conserves the Liouville measure Hf\il dg;, or equivalently that the
divergence of the vector field F is zero

Y OF,
; 3a =0.

We call this property a Liouville theorem.

If ¢ is a field (for instance a two-dimensional vorticity or potential vor-
ticity field), defined over a domain D, Flg](r) is a quantity computed from
the field ¢ at any point r. For instance for the Quasi-Geostrophic equation
Flq] = —v[qg—h] -Vq(r). We continue the discussion for a field equation only.
For any functional K, % is the functional derivative of K at point r, a general-
ization of the usual derivative, such that for any variation dq, at linear order the
first variations of K are given by

V.F

K
K = /D m&](r) dr.

We assume that a Liouville theorem holds for the dynamics (31), in the sense
that the formal generalization of the finite dimensional Liouville theorem

_ oF B
V.]—":/D m(r) dr =0,

is verified.
We also assume that this dynamical system has a conserved quantity G:
dg/dt = 0. From (31), we see that this is equivalent to
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0G
/D Fla) (1) la dr =0, (32)

for any ¢. Those hypothesis are verified, for instance if the dynamical system is
an Hamiltonian system

Flq) ={q,H},

where {.,.} is a Poisson bracket, and G one of the conserved quantity of the
Hamiltonian system, for instance G = H. We stress however that G does not need
to be H.

If the Liouville hypothesis is verified and G is a conserved quantity, we call a
Langevin dynamics for the potential G the stochastic dynamics

0G
dq(r’)

where we have introduced a stochastic force 7, which we assume to be a Gaussian
process, white in time, and correlated as E [n(r, t)n(r',t')] = C(r,r')o(t — ¢'). As
it is a correlation function, C' has to be a symmetric positive function: for any
function ¢ over D

- Falm—a [ o)

[q] dr’ + /207, (33)

// ¢ (r)C(r,r')¢ (r') drdr’ > 0, (34)
DJp

and C(r,r’") = C(r/,r). For simplicity, we assume in the following that C' is positive
definite and has an inverse C~! such that

/ C(r,r1)C Y (ry,x)dr; =6 (r — r/).
D

The major property of a Langevin dynamics is that the stationary probability
density functional is known a-priori. It is

Rl =g e (-21).

where Z is a normalization constant. At a formal level, this can be checked eas-
ily by writing the Fokker-Planck equation for the evolution of the probability
functionals. Then the fact that Ps is stationary readily follows from the Liouville
theorem and the property that G is a conserved quantity for the deterministic
dynamics.

4.2.2 Reversed Langevin dynamics

We consider [ a linear involution on the space of fields ¢ (I is a linear functional
with I? = Id). We define the reversed Langevin dynamics with respect to I as

Jq

n_0Gr /
5 =Frld@) —a /D Cr(r,r )W [q] A’ + \/2a7n, (35)

)



